"Study of connecting point with three-dimensions and four-dimensions by pictorial art"

## Part 5

# "Trinity-type quantum computer circuit structure" SEPTIMALNOTAION IKOSOLID X ${ }^{3}$ 

April 2004

Koei Endo

Ikuyo Endo


SEPTIMALNOTATION IKOSOLID $5^{3}$
( $1 / \mathrm{n}$ square conductor $27 \mathrm{~mm}, 14336$ pieces)
(Total, number of IKOSOLID's : 896
Number of IKOSOLID's equivalent to Klein's bottle (qubit): 512 Number of IKOSOLID's equivalent to Torus $\mathrm{T}^{2}$
(bit): 384


SEPTIMALNOTATION IKOSOLID $2^{3}$
( $1 / \mathrm{n}$ square conductor 27 mm , 512 pieces)
(Total number of IKOSOLID's: 32
Number of IKOSOLID's equivalent to Klein's bottle (qubit): 8 Number of IKOSOLID's equivalent to Torus T ${ }^{2}$
(bit) : 24


Connected seven SEPTIMALNOTATION IKOSOLID $2^{3}$
( $1 / \mathrm{n}$ square conductor $27 \mathrm{~mm}, 3,200$ pieces)
(Total number of IKOSOLID's: 200
Number of IKOSOLID's equivalent to Klein's bottle (qubit): 56 Number of IKOSOLID's equivalent to Torus T ${ }^{2}$
(bit): 144


IKOSOLID ( $1 / \mathrm{n}$ square conductor 48 mm , 16 pieces)

Transformational type of the IKODOEITSCUBE X ${ }^{3-}$ : SEPTIMAL NOTATION IKOSOLID X ${ }^{3}$
a: Oblique whole view of the SEPTIMAL NOTATION IKOSOLID X ${ }^{3}$ Type 1
This figure is that of the SEPTIMAL NOTATION IKOSOLID $2^{3}$.
As the SEPTIMAL NOTATION IKOSOLID X ${ }^{3}$ is transformation of the IKODOEITSCUBE $X^{3}$, there are 2 types of the SEPTIMAL NOTATION IKOSOLID X ${ }^{3}$ s just like those of IKODOEITSCUBE X ${ }^{3}$ s . The difference is just like that of the IKODOEITSCUBE X ${ }^{3}$. So this is Type 1 .


Views from 6 sides of SEPTIMAL NOTATION IKOSOLID X ${ }^{3}$ Type 1
Example : SEPTIMAL NOTATION IKOSOLID $2^{3}$
(Two sides from the top and from bottom are the same and 4 sides from the front, back, left, and right are the same.)

Two sides from the top and bottom are the same.
$\square 4$ sides from the front, back, left, and right are the same.


While the IKODOEITSCUBE $X^{3}$ has a characteristic of infinite expansion in three-dimensional integration, the SEPTIMAL NOTATION IKOSOLID $\mathrm{X}^{3}$ is made to take out the outer-most edge of the IKOSOLID's and by doing so, the characteristic of infinite expansion is lost and becomes a SEPTIMAL NOTATION IKOSOLID $\mathrm{X}^{3}$ with ability of free combination integration. The minimum X of the SEPTIMAL NOTATION IKOSOLID X ${ }^{3}$ is 2 .
The IKODOEITSCUBE $2^{3}$ becomes the SEPTIMAL NOTATION IKOSOLID $2^{3 .}$

Total number of IKOSOLID's on the SEPTIMAL NOTATION IKOSOLID $\mathrm{X}^{3}$ is to be found in accordance with the following formula.
$8(\mathrm{X}-1)^{3+24(X-1)^{2}}=$ the total number of IKOSOLID's
(X: In case of IKODOEITSCUBE $1^{3}$ consisting of 8 IKOSOLID's, we assume $\mathrm{X}=1$ )
The total number of N of the $1 / \mathrm{n}$ squares on the SEPTIMAL NOTATION IKOSOLID $\mathrm{X}^{3}$ is to be found by using the following formula.
$\mathrm{N}=\mathrm{n}\left\{8(\mathrm{X}-1)^{3}+24(\mathrm{X}-1)^{2}\right\} \quad$ K. I. SEPTIMAL NOTATION IKOSOLID
$\mathrm{X}^{3}$ Theorem
$\mathrm{n}=16^{*} \mathrm{x}^{2}$
K. I. Theorem
( n is the number of $1 / \mathrm{n}$ squares on the IKOSOLID
$x$ is the number of $1 / n$ squares on one side of $1 / 16$ squares in a square n.)

| Structure of IKODOEITSCUBE X ${ }^{3}$ |
| :--- | :--- | :--- |

The SEPTIMAL NOTATION IKOSOLID $\mathrm{X}^{3}$ is the symmetrical combination of " $1: 6$ " at the time of symmetrical combination among composing IKOSOLID's. Accordance with the relationship of "1:6", six sides of the solid is " 6 " and center of the solid is " 1 ". The neighboring each " $1: 6$ "is entangled and is in the relationship of symmetrical condition, and has characteristics of "superposition" and "entanglement" in quantum computers, i.e. at the moment when the relationship of " $1: 6$ " is established, instantaneous and endless septimal notation phase transfer circulation occurs in the whole SEPTIMAL NOTATION IKOSOLID $\mathrm{X}^{3}$, by the entangled " $1: 6$ " combination .
" $1: 6$ " in view of the SEPTIMAL NOTATION IKOSOLID $2^{3}$

a. Perspective views from above


b. Perspective views from the side. Each one pair is common and the relation is that of " $1: 6$ ".

Perspective views from above


Perspective views from the side


Perspective views from above


Perspective views from above


Perspective views from the side


These IKOSOLID's can be either 1 or 6 in "1:6".

These $\mathbb{Q}$ IKOSOLID's can be only 6 of " $1: 6$ ".

When one relationship of " $1: 6$ " is completed, instantaneously all become septimal notation condition with endless phase transfer circulation. Center $\boldsymbol{+}$ are IKODOEITSCUBE:
$\left((X-1)^{3}\right.$ and Klein's bottle itself.)

## Free integration of SEPTIMAL NOTATION IKOSOLID X ${ }^{3}$

While the IKODOEITSCUBE $\mathrm{X}^{3}$ has a characteristic of infinite expansion in three-dimensional integration, SEPTIMAL NOTATION IKOSOLID $\mathrm{X}^{3}$, which is a transformational type of it , has the ability of free integration to any shape, but in any kinds of integration, " $1: 6$ " symmetrical rule is applied.
$\square$ Practical free integration (freely combined in "superposition" condition at three-dimensional six directions: up, down, front, back, left, and right)


Structural view from above


Front structural view


Side structural view

The fundamental of this invention is the encounter of the five-dimensional electrons active in five-dimensional space ( - Klein's Bottle) and the three-dimensional electrons active in three-dimensional space( $\circ$ Torus $\mathrm{T}^{2}$ ). We have already succeeded in this encounter and in making it practicable, and the result is this invention.

We completed connecting five-dimensional phase and three-dimensional phase in the following four methods (A, B, C, and D).
A. Our success in making five-dimensional energy three-dimensional by 720 degree phase rotation in $1 / \mathrm{n}$ square (possible only on the IKOSOLID) (Refer to the enclosed our treatise)
"Study of connecting point with three-dimensions and four-dimensions by pictorial art" Part 2 Two questions for mathematicians from art

1. Four-dimensional geometric problem (IKOSOLID as a catalyst)
2. Four-dimensional integral problem (IKOLSOLID as a catalyst)

## IKOSOLID, square n (plane square IKOSOLID), and $1 / \mathrm{n}$ square



Three-dimensional IKOSOLID is a solid, the surface of which is partitioned into $n *(1 / n)$ squares.
$\sqrt{\text { Three-dimensional IKOSOLID } \mathrm{n}}=\sqrt{\mathrm{n}}=$ one side of
square n
i.e. three-dimensional IKOSOLID $n$ is originally square $n$.

$\mathrm{n}=16$
$\sqrt{\mathrm{n}^{2}}=\sqrt{16^{2}}=4^{2}=16$
$\square$ When n is 16 or more, let $\mathrm{x}^{2}$ be the number of $1 / \mathrm{n}$ squares that constitute the entire surface of the $1 / 16$ square.


Minimum number of $n$ is 16 . This number is called minimum invariable to be a three-dimensional IKOSOLID i.e. IKOSOLID Invariable


There are ( $1 / \mathrm{n}$ )* $\mathrm{x}^{2}$ squares on a $1 / 16$ square.

- According to the following K.I. Theorem, when a $1 / 16$ square is partitioned into ( $1 / \mathrm{n}$ )* $\mathrm{x}^{2}$ squares, the number n of the $1 / \mathrm{n}$ squares on the plane square IKOSOLID " n " is to be found


## K. I. Theorem $n=16 \mathrm{x}^{2}$

* Any $n$ number of $1 / n$ squares can be put on the three-dimensional IKOSOLID with symmetrical and endless condition even in millions, billions, trillions, quadrillions, or more by the K. I. Theorem.


## 1/n Square conductor

a A quarter of the $1 / \mathrm{n}$ square is an original picture condition square
True
image

Original
Picture condition

- The true image of the original-picture-condition square has no restriction and is free.
- The $1 / \mathrm{n}$ square is made of the original-picture-condition squares by symmetric rule (on right and left side and upper and lower side) and endless rule.



## Resonance phenomenon, and generation and continuation of permanent current caused by topological configuration of the IKOSOLID

a. Resonance phenomenon, and generation of permanent current caused by the IKOSOLID configuration (topological phenomenon=Klein's bottle phenomenon)
Generation of electricity and continuation of topological phenomenon are supposed to be
occurred by generation and continuation of the energy caused by Klein's Bottle phenomenon (the phase difference between outside and inside)of the IKOSOLID cofiguration.


720 degree phase rotation


Electron flows of n=16 IKOSOLID,This flow occurs only when IKOSOLID is three-dimensional.

b. Our success in connecting five-dimensional space ( $\bullet$ Klein's Bottle) and three-dimensional space (o Torus $\mathrm{T}^{2}$ ) by making the septimal notation structure of "1 (•Klein's Bottle):6 (o Torus $\mathrm{T}^{2}$ )" of IKOSOLID crystal cube, dots of six faces (= ( Torus $\mathrm{T}^{2}$ ) of crystal cube.

five dimensional space (•Klein's Bottle)


three dimensional space (o Torus $\mathrm{T}^{2}$ )
according to the symmetry (topology),"1 (five-dimensional space $\bullet$ Klein's Bottle) : 6 (three-dimensional space ○ Torus $\mathrm{T}^{2}$ )"

to make six plane faces of the crystal cube, dots

all the tips of the IKOSOLID are dots of six faces of crystal cube (oTorus $\mathrm{T}^{2}$ )

Septimal notation connection structure (1:6) in crystal cube structure of IKOSOLID is changed into quantum computer circuit structure.



1) 1: 6

c. Our success in connecting five-dimensional space ( $\bullet$ Klein's Bottle) and three-dimensional space ( $\circ$ Torus $\mathrm{T}^{2}$ ) by making plural IKOSOLID's themselves $\bullet$ Klein's Bottle and o Torus $\mathrm{T}^{2}$ each. (Refer to the our treatise) ("Study of connecting point with three-dimensions and four-dimensions by pictorial art" Part 3 (Moebius Strip and Magic-squared Picture, Klein's Bottle and IKOSOLID)
"Provided that one IKOSOLID is one bit, the connection structure of SEPTIMALNOTATION IKOSOLID X ${ }^{3}$ ( in this case, $2^{3}$ ) is quantum computer circuit structure.

SEPTIMALNOTATION IKOSOLID2 ${ }^{3}$


Quantum computer curcuit structure

Entanglement occurs as each "0"and" 01 "and each " 1 "and" 01 "
do endless phase transfer circulation of septimal notation(1:6)
i.e.when" "0"is input,
" 01 "repeats numerously and when" 1 "is input," 01 "repeats numerously.

So the condition of entanglement occurs.
d. Our completion of the structure of IKODOEITSCUBE X ${ }^{3}$ ( X is 2 and more than 2) and SEPTIMALNOTATION IKOSOLID $\mathrm{X}^{3}$ ( X is 2 and more than 2), in which all the inside constituent IKOSOLID's (IKODOEITSCUBE (X-1)3) are •Klein's Bottle (five-dimensional space) and all the outside projected IKOSOLID's are $\circ$ Torus $\mathrm{T}^{2}$ (three-dimensional space). In addition to that, in the SEPTIMALNOTATION IKOSOLID $X^{3}$, all its structure is septimal notation condition (1:6). All the inside IKOSOLID's (IKODOEITSCUBE (X-1) ${ }^{3}$ ) are •Klein's Bottle (five-dimensional space) and outside IKOSOLID's can be only " 6 " in septimal notation(o Torus $\mathrm{T}^{2}$ (three-dimensional space)), which is the complete structure of septimal notation (1:6). We succeeded in it. The SEPTIMALNOTATION IKOSOLID X ${ }^{3}$ can be connected to six three-dimensional directions (up, down, front, back, right, and left). We understand that the quantum computer has a structure of crystal itself, forms all the configurations, and is able to connect five-dimensional space (•Klein's Bottle) and three-dimensional space ( Torus $^{2}$ ) with its condition of brain (including information) and with its condition of energy. Our invention succeeded in structural function and structural abilities. We can say that SEPTIMALNOTATION IKOSOLID X ${ }^{3}$ is the very quantum computer circuit structure.

# "Study of connecting point with three-dimensions and four-dimensions by pictorial art" 

## Part 6

Three verifications of IKOSOLID (one-dimensional phase crystal solid) (refer to attached verification experiments)

$$
\mathrm{E}=\mathrm{mC}^{2}<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2}
$$

It surpasses Josephson and Meissner effect of super-conductivity at normal temperature
July 2004
Koei Endo
Ikuyo Endo

Article: Copyright© Koei Endo \& Ikuyo Endo 2004 All Rights Reserved
Author: Koei Endo ${ }^{1,2}$ Ikuyo Endo ${ }^{2}$
${ }^{1}$ Member of JIAS (Japan International Artists Society)
2 [ai] CREATION INC. ( Chairman: Koei Endo President: Ikuyo Endo)

- Title

Three verifications of IKOSOLID (one-dimensional phase crystal solid) (refer to attached verification experiments):

$$
\mathrm{E}=\mathrm{mC}^{2}<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2},
$$

It surpasses Josephson effect and Meissner effect of super-conductivity at normal temperature

## - Strapline

We created IKOSOLID (one-dimensional phase crystal solid) of topology configuration by the perspective of pictorial dots. We succeeded in changing volume energy ( m ) and vector energy (C ${ }^{2}$ )(both are three-dimensional energies) in quality to $m$ ' and $\mathrm{C}^{2}{ }^{\text {a }}$

Now, here, we will verify $\mathrm{E}=\mathrm{mC}^{2}<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2}$ in this thesis. It means that, in case of $\mathrm{C}^{2}<\mathrm{C}^{2}$, we can put more than one-second vector energy into one-second energy container, which means time contraction, and that we can put more than one liter volume energy into one liter energy container, which means space contraction. The above means that it surpasses Dr. Albert Einstein's $\mathrm{E}=\mathrm{mC}^{2}$. Also, we will verify by experiments that this IKOSOLID (one-dimensional phase crystal solid) completely surpasses Josephson effect and Meissner effect of super-conductivity at normal temperature.
This IKOSOLID (one-dimensional phase crystal solid) is a benzene solid, which is a catalyst displacing three-dimensional energy to one-dimensional phase

- Body

In this thesis, we would like to surpass Dr. Albert Einstein's $\mathrm{E}=\mathrm{mC}^{2}$ by verifying $\mathrm{E}=\mathrm{mC}^{2}$ $<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2}{ }^{\prime}\left(\mathrm{E}<\mathrm{E}^{\prime}\right.$ and $\left.\mathrm{mC}^{2}<\mathrm{m}^{\prime} \mathrm{C}^{2}\right)$
We change $m$ and $\mathrm{C}^{2}$ ( m to $\mathrm{m}^{\prime}, \mathrm{C}^{2}$ to $\mathrm{C}^{2}$ ) by IKOSOLID. (one-dimensional phase crystal solid).
This is the invention research with verification experiment, which succeeded in displacing three-dimensional energy ( $\mathrm{mC}^{2}$ ) into one-dimensional phase dots.

When we displace and transform $\mathrm{C}^{2}$ to $\mathrm{C}^{2}$, we use 24 right isosceles triangle faces (equivalent to the area of 16 square faces) of IKOSOLID (one-dimensional phase crystal solid). When we displace and transform $m$ to $\mathrm{m}^{\prime}$, we use ten dots (actually six dots). we have already exercised this transformation of $\mathrm{mC}^{2}<\mathrm{m}^{\prime} \mathrm{C}^{2}$, in one IKOSOLID. However, in case of SEPTIMALNOTATION IKOSOLID X ${ }^{3}$ (organization of plural IKOSOLID's), we have two types of IKOSOLID's: one is Klein's bottle (=qubit) type and the other is Torus $\mathrm{T}^{2}$ (=bit) type.
When we apply this IKOSOLID (one-dimensional phase crystal solid) to electrons, it displays the following seven effects. We have already commercialized this invention and started marketing. These seven effects are all the first in the world. (We have already done the experiments by prototype from 1 to 7))

1. Quantum computer server effect (It reduces RC time constant and circuit resistance, and non-linearly increases the pulse oscillating counts in number.
"Pulse non-linear speed-up quantum effect conductor experiment"
2. Electric power amplification effect (Electric power can be amplified linearly and non-linearly without a bias power source. "Experiment on increase of integrating active power of a motor with IKOSOLID and IKODOEITSCUBE X ${ }^{3}$ "
3. Resistance reduction effect (It amplifies electronic energy and reduces resistance.) "SEPTIMALNOTATION IKOSOLID 53 ( $1 / \mathrm{n}$ square conductor 27 mm , 14336 pieces) Load: National electric lamp (110V 100W) Resistance reduction experiment"
4. Magnetic flux reduction effect (It amplifies electronic energy and reduces magnetic flux. "Public experiments in Europe Resistance reduction effect experiment"
5. Long-lasting battery effect (it lasted more than 10 minutes longer than the result of $\Omega$ correction, even though the effective power is bigger. "Long-lasting battery device experiment"
6. Electric-power-loss (even to zero) reduction effect (Usually transformation by a transformer is accompanied by electric power loss. However, by using IKOSOLID, electric power loss reduces and power factor becomes one and the electric power loss reduces to even zero. We can even amplify it. "Device to reduce electric power loss"
7. Power factor improvement (even to one) effect (Usually, when power factor improves and reactive power reduces, active power is sure to reduce. However, when we use IKOSOLID, active power increases and the power factor becomes near 1 and when the power factor becomes 1, the active power continues to increase. "Experiments on increase of integrating active power of a motor and an inverter-controlled compact self-ballasted florescent lamp with IKOSOLID and IKODOEITSCUBE X ${ }^{3}$

All these seven effects were verified by experiments and all these experiments show $\mathrm{E}=\mathrm{mC}^{2}$ $<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2}$. All these are effects concerning electrons. For example, when we apply this invention research, an application of magnetic flux reduction, leakage radioactivity reduction is possible. Also, when we use it as a countermeasure to earthquakes, it reduces vibration time, which we have already experienced. Real Cube, which is the art-type of IKOSOLID, is also effective when it is put at the epicenter and its neighboring area. (Real Cube is the basic prototype of this invention and displayed in various places all over the world as three-dimensional objet d'art. This invention of magnetic flux reduction concerning electrons by Ms. Ikuyo Endo, Painter and Mr. Koei Endo, Painter has completed within a year and three months and has been already commercialized and marketed.

- Text

Next, we will do three verifications. At first, the verification of IKOSOLID (one-dimensional phase crystal solid) surpassing Josephson effect of super-conductivity at normal temperature by measurements of the prototype will be done.
Next, the verification of IKOSOLID (one-dimensional phase crystal solid) surpassing Meissner effect of super-conductivity at normal temperature, by measurement of the prototype will be done. These two are verification experiments of $\mathrm{E}=\mathrm{mC}^{2}<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2}$.
Finally, we will verify $\mathrm{E}=\mathrm{mC}^{2}<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2}$. This is also accompanied by verification experiment.

Verification 1: An IKOSOLID (one-dimensional phase crystal solid) surpasses Josephson effect of super-conductivity at normal temperature.
In case of Josephson effect of super-conductivity, bias power voltage is needed to generate permanent current. However, IKOSOLID can resonate in high-frequency, generate and continue permanent current, without a bias power source inside a shield room (other experiments were done in a radio wave darkroom) (In the actual experiment, it generated and continued W and V) IKOSOLID shows the characteristics of insulator (overload of $L$ component and overload of $C$ component and no Q) by measurement by an impedance analyzer, but once current is passed, it is a good conductor and shows various effects of $\mathrm{E}=\mathrm{mC}^{2}<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2}$ '

Basic abilities of IKOSOLID ( $1 / \mathrm{n}$ squarenote. 1 conductor 48 mm , 16 pieces)
a. Impedance measurement: We measured the impedance of IKOSOLID (1/n square conductor 48 mm , 16 pieces) with frequencies of 50 Hz and 60 Hz (applying AC 1.0 V ), using an impedance analyzer.

Measurement date: February 19, 2004<br>Measurement place: K.I. Laboratory

note.1. As for $1 / n$ squares, please refer to Verification 3. (Extract from "Basic abilities of IKOSOLID")

IKOSOLID impedance data with frequency of 50 Hz
Impedance $Z=1.83 \mathrm{~m} \Omega$ ( $0.0183 \Omega$ )
Inductance $L=$ Overload display
Capacitance $\mathrm{C}=$ Overload display
$Q($ quality factor $)=0.61$

IKOSOLID impedance data with frequency of 60 Hz
Impedance $Z=1.84 \mathrm{~m} \Omega(0.0184 \Omega)$
Inductance $\mathrm{L}=$ Overload display
Capacitance $\mathrm{C}=$ Overload display
$Q($ quality factor $)=0.44$
b. High frequency resonance measurement in a shield room: We shielded IKOSOLID (1/n square conductor 48 mm , 16 pieces) in an aluminum box in the shield room, and measured high frequency permanent current \{at the time of measurement, coaxial cable (50 $\Omega$ ) was connected\}, by a spectrum analyzer. (Permanent current generates without a bias power)

> Measurement date: February 17, 2004
> Measurement place: Miyagi Prefectural Sangyou Gijutsu Sougou Center
> (Extract from Basic abilities of IKOSOLID)

[Figure 1]
High frequency resonance measurement of IKOSOLID (1/n square conductor 48 mm , 16 pieces)
Permanent current measurement inside of the shield room
We put the IKOSOLID in the sealed aluminum shield box inside the shield room without outside radio waves, connected the IKOSOLID itself with the spectrum analyzer using the coaxial cable (50 ), and measured the generated permanent current. (Photo before sealing)

[Figure 2]
High frequency resonance measurement of IKOSOLID ( $1 / \mathrm{n}$ square conductor 48 mm , 16 pieces)
Permanent current measurement inside of the shield room
We put the IKOSOLID in the sealed aluminum shield box inside the shield room without outside radio waves, connected the IKOSOLID itself with the spectrum analyzer using the coaxial cable (50 ), and measured the generated permanent current. (Photo at the time of measuring)

[Figure 3]
High frequency resonance measurement of IKOSOLID ( $1 / \mathrm{n}$ square conductor 48 mm , 16 pieces)
Permanent current measurement inside of the shield room
Permanent current generation by high frequency resonance
High frequency electric power ( 86 pW ) was generated with a resonance frequency of $\mathrm{f}=265.375 \mathrm{MHz}$.

[Figure 4]
High frequency resonance measurement of IKOSOLID (1/n square conductor 48 mm , 16 pieces)
Permanent current measurement inside of the shield room
Permanent current generation by high frequency resonance
High frequency voltage ( $50.814 \mu \mathrm{~V}$ ) was generated with a resonance frequency of $\mathrm{f}=265.375 \mathrm{MHz}$.

Verification 2: An IKOSOLID (one-dimensional phase crystal solid) surpasses Meissner effect of super-conductivity at normal temperature. This is verification experiment by prototype.

In case of Meissner effect of super-conductivity, super-conductor has a nature to repel the magnetic flux in the state of super-conductivity. However, IKOSOLID reduces magnetic flux.

Public Experiments in Europe "Magnetic flux reduction effect experiment"
Experiment Date: April 7, 2004
Experiment Place: Gut Rosnberg - Academy of Handworks in Aachen in Germany
(Extract from "Public Experiments in Europe")
Electrically equivalent circuit diagram of the circuit used for the experiment


| Experiment site (Germany) | Experiment result |
| :---: | :---: |
| A | Approx. 12 mG |
| B | Approx. 0.6 mG |
| C | Approx. 4.0 mG |
| Without IKOSOLID (normal condition) <br> Experiment point A | Approx. 12 mG |

[Figure 5]
*Even one IKOSOLID can have effect to reduce magnetic flux as shown in the above. As we increase IKOSOLID's in number, they reduce the magnetic flux just like synergistic effect significantly. Especially magnetic flux reduces more at the experiment point A. We have already done experiment on this. (Refer to "Magnetic flux reduction experiment with IKODOEITSCUBE 13")

Verification 3: We will verify $\mathrm{E}=\mathrm{mC}^{2}<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2}$
IKOSOLID (one-dimensional phase crystal solid) can surpass Dr. Albert Einstein's $\mathrm{E}=\mathrm{mC}^{2}$ by when electrons flow through the body.

At first, we will verify that IKOSOLID changes $\mathrm{C}^{2}$ to $\mathrm{C}^{2}$ and changes m to $\mathrm{m}^{\prime}$. Next, we will verify synergistic effect in case of: SEPTIMALNOTATION IKOSOLID X ${ }^{3}$ (organization of plural IKOSOLID's). We will give examples, as electrons run through SEPTIMALNOTATION IKOSOLID 5 ${ }^{3}$. The verification will be done through the perspective of pictorial dots. However it will be done under the name of topology.

## Verification 3-1

Verification that IKOSOLID changes $\mathrm{C}^{2}$ to $\mathrm{C}^{2}$ " (Refer to "Study of connecting point with three-dimensions and four-dimensions by pictorial art - Part 1,2,3,4,5")
$\mathrm{C}^{2}$ is the square side of which is light-speed. IKOSOLID constant (16) makes this square change from plane Magic square to three-dimensional Magic square.


The squares made by equal 16 division lost their out-sides and connected. It is three-dimensional Magic square, which is called $\mathrm{C}^{2}$
[Figure 6]

The square $\mathrm{C}^{2}$ are divided into 16 on the surface of IKOSOLID in the condition of three-dimensional Magic square, which we call $\mathrm{C}^{2}$. All the divided-into-16 squares on the surface of the IKOSOLID exist on the surface of the IKOSOLID as 8 right isosceles triangles with the same size of $1 / 16$ square each and as 16 right isosceles triangles with the half size of that each, symmetrically. At this time, the nature of plane Magic square exists even after it changed into three-dimensional Magic Square. However, it has no out-sides. Vector $\mathrm{C}^{2}$ becomes endless condition connecting the beginning and the end once it becomes $\mathrm{C}^{2}$. These $1 / 16$ squares follow symmetrical rule and are folded into right isosceles triangles. The rules of this three-dimensional Magic square are symmetrical rule and endless circulation rule.

$\mathrm{n}=16 x^{2}$ K.I. Theorem
[Figure 7]
K.I. Theorem is a formula to calculate the total number ( $n$ ) of $1 / n$ squares on the surface of one IKOSOLID.

The number of $1 / n$ squares on one divided-into-16 square is $x x x=x^{2} \quad$ To multiply it by 16 makes total number $n$ of $1 / n$ squares.

When $x=1, \mathrm{n}=16 \times 1^{2}=16$. So the minimum number of $1 / \mathrm{n}$ squares is 16 , so we call it "IKOSOLID constant 16 " because one IKOSOLID can be made with $161 / n$ squares.

We could put $\mathrm{C}^{2}$ (a square which side is light-speed C ) on one IKOSOLID as $\mathrm{C}^{2}$. Next, we have two kinds of $\mathrm{C}^{2}$ 'natures. (Refer to "Study of connecting point with three-dimensions and four-dimensions by pictorial art Part 3")



Surface

[Figure 8]

According to the nature of $\mathrm{C}^{2}$, we divide it into two types. However, just like this figure, there is no need of classification. When IKOSOLID's form SEPTIMALNOTATION IKOSOLID X ${ }^{3}$, each IKOSOLID is divided into two types of these $\mathrm{C}^{2}$. And the formula of classification is called K.I SEPTIMALNOTATION IKOSOLID X ${ }^{3}$ Theorem. $\quad \mathrm{N}=\mathrm{n}\left\{8\left(X^{-1}\right)^{3}+24\left(X^{-1}\right) 2\right\}$


As follows, 1/n squares are formed and function just like below. They become plane Magic square and form IKOSOLID's ( $\mathrm{C}^{2}$ ), which circuit vectors endlessly.
(Refer to "Study of connecting point with three-dimensions and four-dimensions by pictorial art" Part 1,2,3,4,5)

$1 / \mathrm{n}$ square


RI=Real image
VI=Virtual image


Original form of 1/n square
$\mathrm{RI}^{\prime}=$ Real image'
VI'=Virtual image'

three-dimensional rotation and symmetrical rotation are 360 degree

360 degree clockwise rotation
720 degree phase rotation
360 degree counterclockwise rotation

Completion of 720 degree phase rotation

Vectors of plane Magic square at the time of $n=16$
Actual endless vector movableness and 720 degree phase rotation which are the connection of the beginning and the end are done only on the IKOSOLID $\mathrm{C}^{2}$.

[Figure 9]

## Verification 3-2

Verification that IKOSOLID changes m to m '. (Refer to "Study of connecting point with three-dimensions and four-dimensions by pictorial art Part 5")
m is three-dimensional volume energy, which is changed into m' (septimal notation structure of 1:6) by changing six faces of volume energy ( m ) of the cube (=crystal cube) into six dots.

$\mathrm{m}=$ crystal cube (cube)


The six faces of the cube (m) become 6 dots


Field of Torus $\mathrm{T}^{2}$ (=bit) ○: six faces


Field of Klein's bottle(=qubit) - : one


Connection of the field of Klein's bottle (=qubit) - and the field of Torus $\mathrm{T}^{2}(=\mathrm{bit}) \bigcirc$
Septimal notation of " $1: 6$ "

[Figure 10]

The IKOSOLID which has septimal notaion structure [1\{Klein's bottle (qubit)\}: 6\{Torus $\mathrm{T}^{2}$ (bit) $\}$ ] is called m'. This septimal notation structure is realized both in a single IKOSOLID and in SEPTIMALNOTATION IKOSOLID X ${ }^{3}$ (Organization of plural IKOSOLID's)
In SEPTIMALNOTATION IKOSOLID X ${ }^{3}$, there is not a single IKOSOLID, which does not comply with this septimal notation structure of 1:6.


- : IKOSOLID equivalent to Klein's bottle (=qubit)
$\circ$ : IKOSOLID equivalent to Torus T² (=bit)

[^0]
## Verification 3-3:

Verification of $\mathrm{E}=\mathrm{mC}^{2}<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2}$ '
(Refer to "Study of connecting point with three-dimensions and four-dimensions by pictorial art Part 5")
In case of $\mathrm{E}=\mathrm{mC}^{2}<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{\prime}{ }^{\prime}$
$m^{\prime}=$ single or plural IKOSOLID(s) with septimal notation structure (1:6)
$\mathrm{C}^{2}{ }^{\prime}=$ Total number ( n ) of $1 / \mathrm{n}$ squares on one IKOSOLID
We can already verify $\mathrm{E}=\mathrm{mC}^{2}<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2}$ in the generation and continuation of permanent current (Verification 1) and the reduction of magnetic flux (Verification 2). However, we want to make it clear in case of SEPTIMALNOTATION IKOSOLID X ${ }^{3}$ (organization of plural IKOSOLID's) by verifying $\mathrm{VA}>\mathrm{VxA}$ (In case of $\mathrm{m}^{\prime} \mathrm{C}^{2}>\mathrm{mC}^{2}, \mathrm{~m}=\mathrm{A}, \mathrm{C}^{2}=\mathrm{V}$ ) In other words, we will verify $\mathrm{E}=\mathrm{VxA}<$ E'=VA.
"K.I. SEPTIMALNOTATION IKOSOLID X ${ }^{3}$ Theorem"
$\mathrm{N}=\mathrm{n}\left\{8\left(X^{-1}\right)^{3}+24\left(X^{-1}\right)^{2}\right\}$

- N is total number of $1 / \mathrm{n}$ squares on SEPTIMALNOTATION IKOSOLID X ${ }^{3}$. Here, the $1 / \mathrm{n}$ squares are considered as conductor to show $V A>V x A$.
- $n$ is the total number of $1 / n$ squares on one IKOSOLID. Here, the $1 / n$ squares are considered as conductor to show VA $>\mathrm{VxA}$.
- $X$ means X of SEPTIMALNOTATION IKOSOLID X ${ }^{3}$.
- $8(X-1)^{3}$ is the total number of IKOSOLID's equivalent to Klein's bottle (=qubit) on SEPTIMALNOTATION IKOSOLID X ${ }^{3}$.
- $24\left(X^{-1}\right)^{2}$ is the total number of IKOSOLID's equivalent to Torus $\mathrm{T}^{2}$ (=bit) on

SEPTIMALNOTATION IKOSOLID X ${ }^{3}$.

```
E'=m'C}\mp@subsup{}{}{\prime
                m'=8( X-1)3 + 24(X-1)2 = Total number of IKOSOLID's on SEPTIMALNOTATION
        IKOSOLID X }\mp@subsup{}{}{3
        C2'=n=Number of 1/n squares on one IKOSOLID
    E
```

Using SEPTIMALNOTATION IKOSOLID 5 , we calculate the numbers of two kinds of IKOSOLID's and the number of $1 / \mathrm{n}$ square conductors. Here, in $\mathrm{n}=16 x^{2}, x=1$ and $\mathrm{n}=16$. ( 16 is "IKOSOLID Constant")

$$
\begin{aligned}
\mathrm{N} & =\mathrm{n}\left\{8\left(X^{-1}\right)^{3}+24\left(X^{-1}\right) 2\right\} \\
& =16 \times\left\{8(5-1)^{3}+24 \mathrm{x}(5-1)^{2}\right\} \\
& =16 \mathrm{x}(512+384) \\
& =16 \mathrm{x} 896 \\
& =14336
\end{aligned}
$$

On SEPTIMALNOTATION IKOSOLID $5^{3}$,
the total number of IKOSOLID's equivalent to Klein's bottle (=qubit):512
the total number of IKOSOLID's equivalent to Torus T² (=bit): 384
the number of $1 / \mathrm{n}$ square conductors: 14336
[When electrons flow through $143361 / \mathrm{n}$ square conductors on SEPTIMALNOTATION IKOSOLID $5^{3}$, $\mathrm{VA}>\mathrm{VxA}$ realizes and $\mathrm{E}=\mathrm{mC}^{2}<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2}$ realizes.]

Verification experiment \{ Refer to"SEPTIMALNOTATION IKOSOLID $53(1 / \mathrm{n}$ square conductor $27 \mathrm{~mm}, 14336$ pieces) Load: National electric lamp (110V100W) Resistance reduction experiment" \}


| $00000: 30: 00$ | 104.89 V | 0.904 A | 0.08 Ap |
| :---: | :---: | :---: | :---: |
|  | $\underline{0.1003 \mathrm{~kW}}$ | 0.1003 kVA | -0.0000 kvar |
|  | $-1.0000(\mathrm{PF})$ | -0.0 DEG | 50.016 Hz |

- Non-linear amplification effect
$\mathrm{VA}>\mathrm{V} \times \mathrm{A} \quad \mathrm{W}>\mathrm{V} \times \mathrm{A} \times 1(\mathrm{PF})$
$100.3 \mathrm{VA}>104.89 \mathrm{Vx} 0.904 \mathrm{~A}=94.82 \mathrm{VA}$
$100.3 \mathrm{~W}>104.89 \mathrm{~V} \times 0.904 \mathrm{~A} \times 1(\mathrm{PF})=94.82 \mathrm{~W}$

Normal condition

[Figure 12]

## Result of measurement of the electric lamp(110V100W)

Total Electric energy for 16 hours (active power =apparent power)
normal condition
1.40741 kwh

SEPTIMALNOTATION IKOSOLID $5{ }^{3}$
( $1 / \mathrm{n}$ square conductor 27 mm 14336 pieces)
1.56548 kwh

$\binom{$ Electric energy $0.15807 \mathrm{kwh}(158.07 \mathrm{wh})}{$ Electric energy amplification factor } | Increase |
| :--- |
| $11.23 \%$ |

Total current for 16 hours
normal condition
13.7315 Ah

SEPTIMALNOTATION IKOSOLID 53
( $1 / \mathrm{n}$ square conductor 27 mm 14336 pieces)
14.3531 Ah
$\binom{$ current 0.6216 Ah}{ current amplification factor }$\quad \begin{aligned} & \text { Increase } \\ & 0.04 \%\end{aligned}$

Average resistance difference every 30 minutes
( $\mathrm{V} \div \mathrm{A}=\Omega$ measured every 30 minutes) for 16 hours

Normal condition---------------------------------------------------------------18. 118.
SEPTIMALNOTATION IKOSOLID5 ${ }^{3}$
( $1 / \mathrm{n}$ square conductor 27 mm 14336 pieces)

The above are three verifications : "An IKOSOLID (one-dimensional phase crystal solid) surpassing Josephson effect of super-conductivity at normal temperature" (Verification 1) "An IKOSOLID (one-dimensional phase crystal solid) surpassing Meissner effect of super-conductivity at normal temperature." (Verification 2) $\quad \mathrm{E}=\mathrm{mC}^{2}<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2}$ (Verification 3).

Once $\mathrm{E}=\mathrm{mC}^{2}<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2}$ is realized, Verification 1 and Verification 2 are realized but our thesis verifies them as basic abilities and functions of one IKOSOLID (one-dimensional phase crystal solid).

As for Verification 3, we verified that $\mathrm{C}^{2}$ changes into $\mathrm{C}^{2}$ ' in Verification $3-1$, and $\mathrm{C}^{2}$ means the vector energy ( $\mathrm{C}^{2}$ ) merged into three-dimensional Magic square. The endless vector energy becomes naught or infinity. The gate of naught or infinity is a dot. In Verification 3-2, we verified change of $m$ into $m$ '.
m' means inclusion of six faces of the cube which realizes volume energy (m) as six dots into dots of septimal notation (1:6). The volume energy, which lost faces, also becomes naught or infinity. The gate of naught or infinity is a dot. In Verification 3-3, when electrons run through SEPTIMALNOTATION IKOSOLID $5^{3}$, it shows non-linear amplification effect. (VA>VxA) The energy ran 158 W more than normal condition (without IKOSOLID) in the circuit for 16 hours and the resistance reduced by $2.86 \Omega$ on average also for 16 hours. It completely surpasses Dr. Albert Einstein's $\mathrm{E}=\mathrm{mC}^{2}$. Now, we concluded three verifications by IKOSOLID (one-dimensional phase crystal solid) created by the perspective of pictorial dots.

# "Study of connecting point with three-dimensions and four-dimensions by pictorial art" 

Part 7

Verification of Maxwell's demon<br>by IKOSOLID (one-dimensional phase crystal solid) (Revolution in thermodynamics)

August 2004

Koei Endo
Ikuyo Endo

## Verification of Maxwell's demon (Revolution in thermodynamics)

1. Conventional thermodynamics denies the existence of Maxwell's demon Mix gas of 0 degree $C$ and the same gas of 100 degree $C$

100 degree $\mathrm{C} \longrightarrow 0$ degree C

2. Verification of Maxwell's demon by Magnetic flux reduction effect experiment Experiment date: August 17, 2004
Experiment site: Public experiment in Building of Universal Art of Cuban National Art Museum

*The same results are obtained even if $a$ and $b$ of the circuit are changed in B.
3. Verification of Maxwell's demon by resistance reduction effect experiment =non-linear amplification effect experiment
(Reference: Resistance reduction experiment, February 2004, K.I. Laboratory in Japan)
E. Normal condition $\mathrm{VA}=\mathrm{VxA} \quad \mathrm{W}=\mathrm{VxAx} 1(\mathrm{PF})$

*Equal relationship between electronic energy from the power source and electronic energy within the circuit

Electronic energy from the power source $\longrightarrow$ Electronic energy within the circuit

| VxA | $(\mathrm{W})$ | VA | (W) |
| :--- | :---: | :---: | :---: |
| 101.00 Vx 0.852 A | "Nearly equal" |  |  |
| $=86.052 \mathrm{VA}$ | $(86.052 \mathrm{~W})$ | 86.4 VA | $(86.4 \mathrm{~W})$ |

F. Connecting SEPTIMALNOTATION IKOSOLID 53 VA $>\mathrm{VxA} \quad \mathrm{W}>\mathrm{VxAx} 1(\mathrm{PF})$ SEPTIMALNOTAYION IKOSOLID5 ${ }^{3} 1 / \mathrm{n}$ square conductor $27 \mathrm{~mm} \quad 14336$ pieces

*Unequal relationship between electronic energy from the power source and electronic energy within the circuit
Electronic energy from the power source $\longrightarrow$ Electronic energy within the circuit

| VxA | $(\mathrm{W})$ | VA | (W) |
| :--- | ---: | ---: | ---: |
| $<$   <br> 104.89 Vx 0.904 A "Not equal"  <br> $=94.82 \mathrm{VA}$ $(94.82 \mathrm{~W})$ 100.3 VA | $(100.3 \mathrm{~W})$ |  |  |

## 4 . Verification of Maxwell's demon by effect experiment of non-linear number

 increase of pulse oscillating count (=Quantum computer server effect)Experiment date: August 10, 2004
Experiment site: Public experiment at Corasse Fukushima,in Fukusima City in Japan

| a | b | c |
| :--- | :--- | :--- | :--- |


| Gate | Gate time | Counter | Pulse count |
| :--- | :--- | :--- | :--- |
| 50 Hz | 0.02 second | 20 MHz | 400,000 (3999 display) |

G. Normal condition


Almost equal in
OUT and IN
H. Connecting IKOSOLID-1-HIF

(1) The display " 000000 " of pulse oscillating indicates non-linear number increase:
"Quantum entanglement phenomenon"
(2) The display " 000000 " of pulse oscillating also appears while OUT gate and IN gate are not connected. However, because the voltages of both OUT gate and IN gate are common and connected and gate frequencies are 50 Hz (OUT), $50 \mathrm{~Hz} \sim$ more than $175 \mathrm{~Hz}(\mathrm{IN})$, IKOSOLID-1-HIF has non-existence character (or penetration character)in the state of "teleportation" concerning pulse oscillating counts.
(3) It has "logic gate for processing quantum bits" of OUT and IN.
(1), (2), (3) mean the completion of quantum computer server.

Experiments to verify the completion of three basic parts [verified by Mr.Isaac L.Chuang (IBM) Mr.Daniel Gottesman(Microsoft)] necessary for all-purpose quantum computer: quantum entanglement particles, teleportation device, and quantum bit processing logic gate.(Reference: Nikkei Science Separate Volume, September 2003, p18)

[^1]Specification A of a counter for SEPTIMALNOTATION IKOSOLID X ${ }^{3}$

|  | output | $50 \mathrm{~Hz} / 5 \mathrm{Vmax} / \mathrm{CMOS}$ output |
| :---: | :---: | :---: |
| 1 | input | DC $\sim 30 \mathrm{MHz} / 5 \mathrm{Vmax} / \mathrm{CMOS}$ input <br> * Input acts as a clock for this counter. |
| 2 | output <br> display | 7 segment red LED • Display lighter digits <br> LED height 14.2 mm <br> Display 3999 or 4000 / O/P and IN terminal at the time of short circuit. |
| 3 | clock | $10 \mathrm{MHz} \pm 1 \mathrm{KHz} /$ stability rate of frequency no FO adjustment function |
| 4 | AC power source | $85 \mathrm{~V} \sim 135 \mathrm{~V}$ |
| 5 | External view | According to the external view A |

Note 1 . This is the counter which displays how many 20 MHz pulses are oscillated within approx. 0.02 second, by LED.
[Display example]
gate frequency (gate time) $\rightarrow$ display

1. $50 \mathrm{~Hz}(0,0200 \mathrm{sec}$. $) \rightarrow 4000$
2. $51 \mathrm{~Hz}(0,0196 \mathrm{sec}$. $) \rightarrow 3921$
3. $49 \mathrm{~Hz}(0.0204 \mathrm{sec}$. $\rightarrow 4081$


Counter external view A Screws are omitted



## Operation explanation

## 1. Movement of the counter



It counts how many input pulses are in 50 Hz ( 0.02 second)
frequency =1/ cycle (time)

This time, we can know the frequency fluctuation by changing the gate time of $50 \mathrm{~Hz}(2 \mathrm{mS})$, instantaneously. When we try to measure the fluctuation of $50 \mathrm{~Hz}(2 \mathrm{mS})$ with the same accuracy, gate frequency is $0.000125 \mathrm{~Hz}(8000 \mathrm{~S})$ and it takes 2 hours and 13 minutes.

## 2. Connection of $\mathrm{O} / \mathrm{P}$ terminal and IN terminal

20 MHz is input to the counter and 50 Hz is input to the gate, then 400000 is displayed. This 400000 is the standard.

## 3. Connection to SEPTIMALNOTATION IKOSOLID X^3 <br> 50 Hz is varied

example (1): When frequency is changed into $49 \mathrm{~Hz}, 408163$ is displayed.
So it is 8163 more than 400000 .
example (2) When frequency is changed into $51 \mathrm{~Hz}, 392156$ is displayed.
So it is 7844 less than 400000 .

## 4. Frequency can be calculated

example (1) When 410000 is displayed, $20000000 \div 410000=48.78 \mathrm{~Hz}$
example (2) When 300000 is displayed,

$$
20000000 \div 300000=66.67 \mathrm{~Hz}
$$

Concluded

## Counter block diagram


5. Verification of Maxwell's demon by power factor improvement

| W : active power |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | PF | $\theta$ DEG: angle of factor <br> VA: <br> arent power | Var: reactive <br> power <br> var | W |
|  | Power factor <br> improvement | Apparent power | Reactive power | Active power |
| (1) <br> Power factor improvement <br> by a condensive capacitor <br> *When Maxwell's demon does not exist | - As power factor improves, the triangle becomes smaller. <br> - When power factor=dot, power factor one is impossible because all the electric powers are zero. | - As power factor improves, apparent power reduces. | - As power factor improves, reactive power reduces. When reactive power becomes zero, all the electric powers become zero and the triangle becomes a dot. <br> 1(PF) | - As power factor <br> improves, active power reduces. |
| (2) <br> Power improvement <br> by IKOSOLID <br> *When Maxwell's demon exists | - As power factor improves, the triangle extends horizontally <br> - When power factor is one, the triangle becomes one line. | - As power factor improves, apparent power becomes close to active power and becomes same when power factor is one. $\begin{aligned} & V A=W \\ & 1(P F) \end{aligned}$ | - As power factor improves, reactive power reduces. <br> (Depending on the angle $\theta$ of the power factor, it increases temporally, at such time, apparent power and active power increase, too) <br> - When reactive power is zero, the triangle becomes a line. | - As power factor improves, active power increases. <br> - When power factor is one, apparent power = active power and the triangle becomes one line and continues increasing. |

I We will verify" (2) Power factor improvement by IKOSOLID =Maxwell's demon"
I-1 Experiments on increase of integrating active power of a motor with IKOSOLID and IKODOEITSCUBE X^3
"Amplification rate 47.27\% (2 hours' measurement)
December 7, 19, 2003
K.I. Laboratory in Japan

Measurement data for integrated two hours

Experiment A:


Integrated active power 0.24017 kwh


Integrated active power 0.35369 kwh


I-2 Experiment to reduce power loss (to make power factor of transformer one)

Phenomena of electric power loss reduction and electric power amplification
September 3, 14, 15, 16, 2003
Wiring diagram
K.I. Laboratory in Japan


I-3 Experiment to make inverter (bulb fluorescent lamp) power factor one
Reference: Experiments on increase of integrating active power of a motor and an inverter-controlled compact self-ballasted fluorescent lamp with the IKOSOLID and the IKODOEITSCUBE

May 28, June 16, 2003
K.I Laboratory in Japan


I-4 Non-linear amplification of power factor one of an incandescent lamp
Reference: Resistance reduction experiment
February 10, 2004
K.I. Laboratory in Japan

Normal condition
e
$\mathrm{VA}=\mathrm{V} \times \mathrm{A} \quad \mathrm{W}=\mathrm{V} \times \mathrm{A} \times 1(\mathrm{PF})$


There is a little tolerance of wattmeter, but it became almost $\mathrm{VA}=\mathrm{VxA}$ as calculated
f SEPTIMALNOTATION IKOSOLID5 ${ }^{\wedge} 3$ is connected VA $>\mathrm{VxA} \quad \mathrm{W}>\mathrm{VxAx} 1(\mathrm{PF})$
SEPTIMALNOTATION IKOSOLID $5^{\wedge} 31 / \mathrm{n}$ square conductor 27 mm 14336 pieces
 experiment, September 7,2004, K.I laboratory in Japan)

(Reference: Resistance reduction experiment
September 7, 2004, K.I Laboratory in Japan)
"Comparison of normal e. and g. of resistance reduction experiment"
Total electric energy $24.65 \%$ increase ( 16 hours)
Total current $\quad 19.83 \%$ increase ( 16 hours)
Average in 16 hours $118.34 \Omega \rightarrow 99.06 \Omega$
Resistance $19.28 \Omega$ decrease

* Pile four lines (e-1, f-1, g-1, g-2)


$$
\begin{aligned}
86.4 \mathrm{~W}= & 86.4 \mathrm{VA} \\
& \rightarrow 100.3 \mathrm{~W}=100.3 \mathrm{VA} \\
& \rightarrow 107.2 \mathrm{~W}=107.2 \mathrm{VA} \\
& \rightarrow 112.6 \mathrm{~W}=112.6 \mathrm{VA}
\end{aligned}
$$

This Verification of Maxwell's demon by IKOSOLID (one-dimensional phase crystal solid) (Revolution in thermodynamics) is the verification of the existence of Maxwell's demon at the time of power factor improvement by experiments.
As for the theory (experimental verification attached), you will obtain further understanding by referring to Three verifications of IKOSOLID (one-dimensional phase crystal solid) (refer to attached verification experiments) $\quad E=m C^{\wedge} 2<E^{\prime}=m^{\prime} C^{\wedge} 2^{\prime}$ It surpasses Josephson and Meissner effect of superconductivity at normal temperature.

Koei Endo<br>Ikuyo Endo

# "Study of connecting point with three-dimensions and four-dimensions by pictorial art" 

## Part 8

Super-two-dimensional vision and IKOSOLID
"Regular/Reverse Confluence of Substance/Space and Anti-substance/Anti-space by IKOSOLID Configuration"

December 2004

Koei Endo
Ikuyo Endo

Copyright © Koei Endo \& Ikuyo Endo 2004 All Rights Reserved

## 1. Aims of this treatise

The aim to write Part 8 of "Study of connecting point with three-dimensions and four-dimensions by pictorial art" is to clarify the relationship between IKOSOLID configuration, and real picture and Magic Squared picture (refer to Part 1and Part 2). The other aim is to clarify "super-two-dimensional vision" superposing the two-dimensional vision of IKOSOLID cross-intersecting connection structure (refer to Part 3) with four-dimensional vision.

IKOSOLID is fundamental element and crystal body as space constituting factor from the origin of space, which is prerequisite of Part 1~8.

The reality to the residents in three-dimensional world is two-dimensional vision (the image we can see in a plane mirror): We can only see the surface and cannot see the back at the same time. Artists have been studying this reality for hundreds of years. The possibility to superpose two-dimensional vision with four-dimensional vision has been displayed in picture works by humble and famous artists from generation to generation. We can say that the work in which they can succeed to realize five-dimensional beauty and love on a two-dimensional canvas in the three-dimensional space is a great picture.

It was Pablo Picasso who could succeed in structurally expressing two-dimensional vision and four-dimensional vision on two-dimensional canvas, which is his great work.

In Part 1~7, my wife and I tackled the application of art picture research to science, with our knowledge of science. In Part 8, with knowledge about positive energy and negative energy of Dirac equation and about "substance/space" and "anti-substancel/anti-space", we describe the application of art picture research to this field.

After Treatise Part 2, (except Treatise Part 1), we wrote in response to the voices from friends of mine (researchers and scholars of physics and mathematics). We anticipate your understanding of this treatise.

December, 2004
Koei Endo
Ikuyo Endo

## 2. Super-two-dimensional vision

The residents in three-dimensional world with two-dimensional vision (We can only see one surface reflected on a plane mirror) cannot see the back. So we (residents in three-dimensional world) cannot see anti-substance/anti-space.
However, on the surface of IKOSOLID, the residents of three-dimensional world, for the first time, can see anti-substance and anti-space with two-dimensional vision. So, we can experience and apply anti-substance and anti-space. We call these two-dimensional visions on the surface of IKOSOLID super-two-dimensional vision.
By following the process of transforming connected four Plato's regular octahedra into one IKOSOLID (referring to Treatise Part 4), we will show you the relation between two-dimensional vision and four-dimensional vision. We can see that the relation between super-two-dimensional vision and four-dimensional vision is that of Moebius Strip, which is realized in IKOSOLD. We can also say that it is Moebius Strip relation of positive energy and negative energy in Dirac eqation. In other words, we can say that the Moebius relationship between substance/space and anti-substance/anti-space is established in IKOSOLID.
${ }^{\circ}$-1 To transform connected four Plato's regular octahedra into one IKOSOLID

${ }^{\text {o-2 }}$ Connected four Plato's regular octahedra from the above (two-dimensional vision)


Two-dimensional Vision 1\&2
Four-dimensional Vision-2
Four-dimensional Vision-1 (Figure 1-2)
*Two-dimensional Vision 1\&2
Two-dimensional Vision 1 is the vision which will become Super-two-dimensional Vision. Two-dimensional Vision 2 is potentialized Two-dimensional Vision and potentialized Supper-two-dimensional Vision. We distinguished the difference to identify each. (We will verify this in this thesis.)
o-3 To fold-back the back sides of four Plato's regular octahedra to front sides at the same angle.



Two-dimensional Vision $1 \& 2$ Four-dimensional Vision-2 (Figure-2)

Cubism by Pablo Picasso

Four-dimensional
Vision-1



Four-dimensional Vision-1
(Figure 2-2)
--4 To change a solid into a plane (Square)


Two-dimensional Vision 1\&2
Four-dimensional Vision-2
(Figure-3)
${ }^{\circ-5}$ To delete two perpendicular lines on the plane (square)

${ }^{\circ}-5$ ’ To display the 720 Degree Phase Circulation Figure of $n=16 x^{2}$ at the same time of making Folding Line Figure to make IKOSOLID
(Refer to Part 1~6 of these treatises about 720 Degree Phase Circulation Figure.

[Notes] m (Refer to Treatise Part 5,6)


Six faces $=m$
Six faces are m (Mass)


To connect six faces.


To change six faces into six dots


Six faces (mass) are changed into six dots and become 10 apexes of IKOSOLID
-0-6 To divide the square into two

${ }^{0}-6$ 'To divide Square $\mathrm{C}^{2}$ and Square ${ }^{50}$ into two.

o-7 To put the divided two rectangles vertically and horizontally, each.



Two-dimensional Vision 1\&2
Four-dimensional Vision-2 (Figure 6)
${ }^{\circ}-7$ 'To put the divided two rectangles vertically and horizontally, each.

--8 90 degree Phase Transfer $=$ Cross-intersecting connection



Two-dimensional Vision 1\&2
Four-dimensional Vision-2
Square C ${ }^{2}$
(Figure 7)


Four-dimensional Vision 1
Square ${ }^{8} 5$
(Figure 7-2)

०-8’ 90 degree Phase Transfer = Cross-intersecting connection


Four-dimensional Vision-2
"Substance/Space"
Square C ${ }^{2}$
(Figure 7-3)


Two-dimensional Vision 1\&2



"Anti-substance/Anti-space"
Square ${ }^{8} 5$
(Figure 7-4)
(1) Each of the cross-intersecting connection of "Substance/Space" (Figure 7-3) and the cross-intersecting connection of "Anti-substance/Anti-space" (Figure 7-4) is established as connection to endless circulation condition. At the same time, these endless circulation conditions are non-linear connection condition of || in two-dimensions, in cross-intersecting connection in solid two-dimensions, on condition that $\mathrm{A}=\mathrm{A}$,
 Solid configuration of IKOSOLID make these non-linear connections possible.
(2) The relationship of Square $\mathrm{C}^{2}$ (Substance/Space) and Square ${ }^{8} \mathrm{O}$ (Anti-substance/Anti-space) is that of back and front: that of complete permeation. This permeation relationship is originated from the establishment of $1 / 16$ square [In square $n$ with a formula ( $n=16 x^{2}$ ). Here, $n=16 \times 1^{2}=16$. So $1 / 16$ square.]
-9 Connection of "Substance/Space" and "Anti-substance/Anti-space" by IKOSOLD configuration
In case of cross-intersecting connection of ${ }^{\circ}-8$ (Figure 7), IKOSOLID is created by facing and inward-folding of a half of Square BADC and a half of Square AD'C'B'
At this time, The half of Square BADC (=Front b) disappears from the surface of IKOSOLID and enters into inside. The only thing remained on the surface of IKOSOLID is the half of Square AD'C'B' (Front a) and there appears $\operatorname{AG}$ ○ ( $=$ Back b) of Four-dimensional Vision-1 on the surface.
(1) Two-dimensional Vision and Four-dimensional Vision are superposed on the surface of IKOSOLID

(2) Two-dimensional Vision-2 and Super-two-dimensional Vision are potentialized on IKOSOLID internal surface and become Four-dimensional Vision 1\&2.

*Refer to Thesis Part 6 for " $\mathrm{E}=\mathrm{m} \mathrm{C}^{2}<\mathrm{E}^{\prime}=\mathrm{m}^{\prime} \mathrm{C}^{2}$ "

- -9'Connection of "Substance/Space" and "Anti-substance/Anti-space" by IKOSOLID configuration
(1) Four kinds of reverse confluences: $[\mathrm{A}],[\mathrm{B}],[\mathrm{A}]-2,[\mathrm{~B}]-2$ (Reverse Confluence of Substance/Space and Anti-substance/Anti-space $\leftrightarrows \leftrightarrows-=$ )

Front b

(Internal Surface)

Front a becomes internal surface and surface is Back a.
[B]

[B]-2

(1) -1 [A] "Surface" Reverse Confluence
 Here, Reverse Confluence is displayed. It shows actual surface cross and actual internal surface cross.

When IKOSOLDD is established in cross-intersecting connection of Figure [A], $\square$ AD'C'B' (Front a) becomes the surface of IKOSOLDD, and $\square$ BADC (Front b) disappears from two-dimensional vision to see surface because it becomes the internal surface. Instead, we can see $\square$ Ag OG (Back b) [back of BADC (Front b)] on the surface. The following figure shows this process, which we call Surface Reverse Confluence of "Substance/Space" and "Anti-substance/Anti-space". Seeing reverse confluence on the surface is Super two-dimensional Vision

*The cross-intersecting connections of Figure $[\mathrm{A}]$ are regular confluences in each $\mathrm{A}=\mathrm{A}, \mathrm{B}=\mathrm{B}, \mathrm{C}=\mathrm{C}^{\prime}, \mathrm{D}=\mathrm{D}^{\prime}$. However, Front a becomes Surface and Front b becomes Internal Surface when IKOSOLD is established. The cross-intersecting connection of Figure of Surface [A] is actual connection of IKOSOLID establishment and is reverse confluence.

## (1)-2 [A] "Internal Surface" Reverse Confluence

Opposite to the processes of surface of [A], the ones of internal surface are illustrated. Even on internal surface, the connection of "Substance/Space" Front and "Anti-substance/Anti-space Back is reverse confluence just like the surface. However, Two-dimensional Vision, and Super-two-dimensional Vision to see "Anti-substance/Anti-space are established on the surface for three-dimensional-world residents. On the internal surface, the Two-dimensional Vision to see Figure [A] becomes potentialized, and also the Super-two-dimensional Vision to see "Anti-substance/Anti-space" becomes potentialized.
In two kinds of reverse confluences ([A] [B]), if you change surface and internal surface of $[A]$, it changes into [B], because the relationship between the surface and the internal surface is that of Moebius Strip. And in the two confluence kinds of $[\mathrm{A}]-2$ and $[\mathrm{B}]-2$, if you change the surface and internal surface of $[\mathrm{A}]-2$, it changes into $[\mathrm{B}]-2$, because the relationship between the surface and the internal surface is that of Moebius Strip.

(Figure of Internal Surface [A]')
(2) Four kinds of regular confluences: [C],[D], [C]-2, [D]-2 (Regular Confluence of Substance/Space and Anti-substance/Anti-space $\leftrightarrows$ S-i )

(2)-1 [C] "Surface" Regular Confluence

Here, it shows actual surface cross and actual internal surface cross of IKOSOLD in case of [C].

(2)-2[C] "Internal Surface" Regular Confluence

Opposite to the processes of surface of [C], the ones of internal surface are illustrated.
Even on internal surface, the connection of "Substance/Space" Front b and "Anti-substance/Anti-space Front a is regular confluence just like the surface. However, Two-dimensional Vision, and Super-two-dimensional Vision to see "Anti-substance/Anti-space are established on the surface for three-dimensional-world residents. On the internal surface, the Two-dimensional Vision to see Figure [C] becomes potentialized.
In two kinds of regular confluences ([C] [D]), if you change surface and internal surface, it changes into [D], because the relationship between the surface and the internal surface is that of Moebius Strip. And in the two regular confluence kinds of [C]-2 and [D]-2, if you change the surface and internal surface of $[\mathrm{C}]-2$, it changes into [D]-2, because the relationship between the surface and the internal surface is that of Moebius Strip.


## 3 Definition of Super-two-dimensional Vision

Definition 1: Super-two-dimensional Vision is established on the surface of IKOSOLID. On the internal surface of IKOSOLID, it is established on the internal surface potentially.

Definition 2: Two-dimensional Vision is the vision to see the plane surface of substance/space. Four-dimensional Vision is the vision to see the surface and internal surface of substance/space and anti-substance/anti-space at the same time.

Definition 3: Super-two-dimensional Vision is established on *the half surface of IKOSOLID with Two dimensional Vision-1 and with Four-dimensional Vision-2, and on the other half surface with the "Super-two-dimensional Vision" and Four-dimensional Vision-1.
*1 Originally, IKOSOLID is a square and is established by cross-intersecting connection with divided halves of the square.

Definition 4: On the internal surface, the half internal surface is established with "Potentialized two-dimensional Vision-2" and Four dimensional Vison-2, and the other half internal surface is established with "Potentialized Super-two-dimensional Vision" and with Four-dimensional Vision-1.

Definition 5: IKOSOLID can connect Substance/Space and Anti-substance/Anti-space with Super-two-dimensional Vision. There are four kinds of reverse confluences and four kinds of regular confluences in these connections.

Definition 6: We can easily distinguish the reverse confluence of Substance/Space and Anti-substance/Anti-space (Torus $\mathrm{T}^{2}=$ the bits which can be connected with qubits) to the regular confluence (Klein's Bottle = qubits), with complex structure of IKOSOLID. The formula to distinguish them is called K.I. SEPTIMALNOTATION IKOSOLID X ${ }^{3}$ Theorem.

$$
\begin{aligned}
& \mathrm{N}=\mathrm{n}\left\{8(\mathrm{X}-1)^{\left.3+24(\mathrm{X}-1)^{2}\right\} \quad \text { K. I. SEPTIMALNOTATION IKOSOLID X } 3}\right. \text { Theorem } \\
& \mathrm{N}: \text { Total number of } 1 / \mathrm{n} \text { squares } \mathrm{n} \text { : Total number of } 1 / \mathrm{n} \text { squares on one IKOSOLID } \\
& \text { Total number of IKOSOLIDs of regular confluence type (Klein's Bottle = qubits) : } \\
& \qquad 8(\mathrm{X}-1)^{3} \\
& \text { Total number of IKOSOLIDs of reverse confluence type (Torus T² }=\text { the bits which can } \\
& \text { be connected with qubits) : } \\
& \qquad 24(\mathrm{X}-1)^{2} \\
& \text { IKODOEITHCUBE } 1^{3} \text { consisting eight IKOSOLIDs is one (1) concerning counting X } \\
& \text { (Notes: Please refer to Part } 6 \text { as to comparison and actual counting method of } \\
& \text { IKODOEITHCUBE X }{ }^{3} \text { and SEPTIMALNOTATION IKOSOLID X }{ }^{3} \text { ) }
\end{aligned}
$$

Definition 7: We can easily distinguish the surface to potentialized internal surface of IKOSOLID by the connections between plural IKOSOLIDs (six directions: up, down, right, left, front, and rear). Each neighboring IKOSOLID is surface and internal surface alternately. (We have already realized them.)

Definition 8: We can combine plural IKOSOLIDs like cells of living things by SEPTIMALNOTATION IKOSOLID X ${ }^{3}$ (1:6). The connections are free to six directions. (We have already realized them.)
Each bit of SEPTIMALNOTATION IKOSOLID X ${ }^{3}$ (1:6) is in the condition of teleportation.

Definition 9-1: By free creation with SEPTIMALNOTATION IKOSOLID X ${ }^{3}$ (1:6), we can realize super-solid, which we can materialize easily by SEPTIMALNOTATION IKOSOLID X3 (1:6). (We have already realized them.)


The internal surface (There is

Super solid (Teleportation condition with no time lag and space lag between outside solid and inside solid)

Strings are bits but always pass qubits and connect the bit walls of outside solid and the bit walls of inside solid. As each bit of SEPTIMALNOTATION IKOSOLID $X^{3}(1: 6)$ is in the condition of teleportation (no time lag and no space lag), between the bit wall of outside solid and the bit wall of inside wall, we have teleportation. \{no time lag and no space lag (distance)\}

Definition 9-2: Concerning super solid, there is only surface of bit on outside solid and there is only internal surface of bit on inside solid.

Definition 9-3: The residents of three-dimensional world are given two-dimensional Vision and can only see one plane surface. We can see the surface of outside solid of super solid, but actually see the internal surface of inside solid when we consider the space structure.

Definition 9-4: We can see the surface of outside solid and the internal surface of inside solid of super solid at the same time with Four-dimensional Vision 1\&2. With configuration of IKOSOLID, we can see half surface of outside solid and half internal surface of inside solid with Super-two-dimensional Vision.

Definition 9-5: Super-two-dimensional Vision is established in a single IKOSOLID or in a complex organization of IKOSOLIDs because IKOSOLID can express space structure (space and anti-space).

Koei Endo

# Study of connecting point with three-dimensions and four-dimensions by pictorial art 

## Part 9

A solid of the plane benzene (a figure of carapace of a turtle) by IKOSOLID

J une, 2009
Koei ENDO

Ikuyo ENDO

Copyright ©koei Endo \& Ikuyo Endo 2009 All Rights Reserved

We describe that this article makes plane benzene (a figure of carapace of a turtle) by IKOSOLID a solid and can display it. (Art name of IKOSOLID is REALCUBE.) Even several lines can let you arrange IKOSOLID behind plane benzene, besides.

In "6, the characteristics of the IKOSOLID" of the first article, IKOSOLID displays that it is a solid of the plane benzene with photographs till now. In addition, as a connective mode of IKOSOLID, there are the edge interface and the point interface of 17 page. In 18 page of (3) there are displacement (separation), combination, and rotation of IKOSOLID's in the state of symmetry.
And we transcribe the self-rotation of IKOSOLID's of symmetrical pictures and real image pictures (symmetrical image and real images)in the page 19 of (4). And we write a function of IKOSOLID as the solid of the plane benzene in page 19~20.

In addition, in the second article, the projection body of the regular octahedron of Plato proves that it is IKOSOLID in the first half.

The proof method proved a definition "reflected the regular octahedron of Plato as for IKOSOLID " with a photograph and a figure while showing issue of these [4 dimensions geometry (We assume IKOSOLID a catalyst)] By this proof, about a regular octahedron of Plato, we show that it is a closedown body that has the only outside. In contrast, we show that IKOSOLID is an opening body connecting the outside and the inside together.
Therefore when we reflect four regular octahedrons of Plato of the closedown body in perspective and make them an opening body, we show that the opening body is one IKOSOLID. By the transformation of this topology, the ratio(4:1) is seen. The fourth article shows this with a photograph definitely. Because an electron(e) is a closedown body (a two-dimensional body) in the three-dimensional world, that we showed 5 dimensions in the threedimensional world was disturbed till now.
However IKOSOLID for an opening body, we think that IKOSOLID became the medium which connects fifth dimensions to the third dimensions.
Therefore we think that positrons (e+) of fifth dimensions of bodies came to appear through the medium IKOSOLID .

BY second article latter half, we proved that we can set REAL PICTURES (Front and back same picture with symmetric top and bottom symmetry) up around the surface of IKOSOLID according to a law (Mirror side pair, endless circulation) and a formula(The total number of REAL PICTURE $=n \quad n=16 x^{2} 16$ is IKOSOLID FIXED NUMBER.) These REAL PICTUREs are one Magic Squared PICTURE on the surface of IKOSOLID.

In the third article a MAGIC SQUARED PICTURE which consists of REAL PICTUREs on the surface of IKOSOLID becomes MOEBIUS STRIP or KLEIN'S BOTTLE. In addition, the plan of IKOSOLID is stated clearly here.

In fourth article one REGULAR OCTAHEDRON by PLATO (A male body. A closedown body) transforms itself and becomes $1 / 4$ of IKOSOLID (A female body. An opening body).

One REGULAR OCTAHEDRON by PLATO of 4 rightness shape do topological transformation and that is to say becomes oneIKOSOLID. This article consists of plural proof photographs by the model and serves as the proof photographs of the second article.

In fifth article we set up copper sheet on the surface of IKOSOLID and really entered scientific study by using IKOSOLID as an electromagnetic conductor. The title of this article is " Trinity - type Quantum Computer Circuit Structure" SEPTIMALNOTATION IKOSOLID $X^{3}$. I $n$ this article we used SEPTIMALNOTATION IKOSOLID's $5^{3}$ [ Total number of IKOSOLID's equivalent : 896. Number of IKOSOLID's equivalent to Klein's Bottle(qubit) : 512. Number of IKOSOLID's equivalent to torus $\mathrm{T}^{2}$ (bit) : 384 ] This SEPTIMALNOTATION IKOSOLID's $5^{3}$ is constituted 3-dimensional benzene only by point connection without aspect connection, and we succeeded in scientific research with this.

The sixth article makes the electronic thing which we contributed to British "Nature" - magazine an article. An electronic reply of the refusal came from an editor of "Nature" - magazine immediately,

The seventh article is an article to become the thermodynamic revolution and verification of Maxwell's demon.

The eighth article describes regular/reverse confluence of
substance/space and anti-substance/anti-space by IKOSOLID configuration.

In this article not only the point connection between IKOSOLID but also, including side connection, we showed plane benzene by IKOSOLID with a photograph as three-dimensional benzene. These become just an example, but we think that it becomes an important articlefor study in the future.

J une 16, 2009
Koei ENDO
Ikuyo ENDO

2, We take a picture of the solid of the plane benzene. Photography J une 16, 2009
2-1 From the front


2-2 From a right side surface of the front



2-4 From the left side surface of the front



2-6 From the slippage top of the front


2-7 From the slippage top of the next


Study of connecting point with three-dimensions and four-dimensions by pictorial art Part 10
"A solid of the plane benzene by IKOSOLID"
"A characteristic of the connection in solid, and $J$ unction of $\oplus$ body and $\Theta$ body of IKOSOLID"


The infinite circulation between BEAUTY and LOVE Oil painting by Ikuyo ENDO
The picture expressing the cross of the multilayered two-dimensional body which is the essence shape of IKOSOLID. There is the secret of the function to penetrate a dimension of IKOSOLID here.

July, 2009
Koei ENDO
Ikuyo ENDO

1, The purpose of this article
We describe that a characteristic of the connection in a solid of the plane benzene by IKOSOLID, and junction of $\oplus$ body and $\Theta$ body of IKOSOLID in this article.
$\bigcirc$ Wide connection

- Connection in a mirror side pair "Two points of connection"
- Connection in a non-mirror side pair "One point of connection"

We express it as "MIDDLE" This one point of connection can do the continuation aside, too, and can be replaced to the two points of connection,too. [Refer to photograph 3 and 4]
$\bigcirc$ Diagonal connection (Free connection to be next to top and bottom connection)

- Diagonal connection of $\oplus$ (a principle)
- Diagonal connection of $\Theta$ (a principle)
- The diagonal connection that coexisted of "MIDDLE".

O Top and bottom connection (The freest connection)
$\bigcirc$ The junction between $\oplus$ body and $\Theta$ body in a solid

In a solid of the plane benzene, there is the junction of $\oplus$ body and $\Theta$ body. Thi s junction is originally linear junction between $\oplus$ body and $\Theta$ body in the four dimensi ons, but in the real three-dimensi onal world, it becomes the non- I i near junction
By the non-linear junction, linear shape $j$ oins by IKOSOLID which is three-di mensi onal benzene.

As for this, both the el ectron and the DNA becone the closedown body in the three- di mensi onal world, we show that they become both of the opening body like in the four-di mensi onal world by I KOSOLID.
Wen an el ectron becomes the opening body; a positron (e+) comes to appear in the three-dimensi onal world normal space.

In the moder n science, they let a phot on and a phot on collide at the speed that is al most vel ocity of light by strong energy with an accel er ator, and pair creation does an el ectron and a positron.

However, we think in this way. About the positron, positron outbreak is up momentarily on this occasi on with two el ectronic one side as an openi ng body because a positron jumps out of the opened mouth.

However, as for this, an electron and the positron do pair anni hilation i medi at ely wi thout can carry enough out the function of a true positron without doing topol ogical transformation of ectronic mass because it is a method
that it overdoes it.In other words because, in the accel erator, an el ectron becomes the openi ng body by dest ructive ener gy to the mmass tempor arily by force, the durability with the opening body is not shown,
next a pair anni hilation phenomenon to becone the gamma ray (a photon) to ret urn in an el ectron destructively by force this time is gener at ed.

On the ot her hand, when a positron is in the DNA, 4 dimensi ons of DNA becomes an openi ng body havi ng a pl an and get possi ble to cure every di sease.

Therefore that the success of the emission of the positron in the three-di mensi onal world by I KOSOLID (That an el ectron I asts with an opening body, and a positron is stable, and it can be there in the three-dimensi onal world) is realized, because DNA opens(In other words of $f$ of the DNA becomes on), that is proved.

If we get linear junction in three dimensional world as well as in four-di mensi onal world, $j$ ust to take an el ectron and the DNA for an example, it affects evol ution for human bei ngs ; it is important; made rapid progress.
"The junction of $\oplus$ body and $\Theta$ body by a solid and a solid of the plane benzene" in this article is epoch- making in this sense.

There are four different kinds for the junction of $\oplus$ body and $\Theta$ body by a sol id, besi des, it is the junction that anybody do not have an idea in the pl ane benzene.

Wth a solid of the pl ane benzene, we do not become mer el sol id. In the junction with the solid of $\oplus$ body and $\Theta$ body, the linear junction must be able to be realized equally in three-dimensi onal world as well as in the four di mensi ons.

I KOSOLID own to use for the junction looks like a solid seemingly, but the essence is "the multi-layer two di mensi ons body" whi ch is common to the four di mensi ons and the three di mensions, and linear shape joins it in the four di mensi ons, and it is important inthis sense to be "multi-l ayer two di mensions body" of the nonl inearity junction in the three di mensi ons

Thi s multilayer ed two-di mensi onal body is expressed as a cross extendi ng over three di mensi ons and four di mensi ons as a multilayered plane.

The central cross of the pi cture (drawn by I kuyo Endo) in the cover of this articleisit.

On the cross with rect angl es of I ength and breadth on two l evel s, the pi ct ur es called *note REAL PICTURE with the same face on the back and surface are arranged according to the law of the mirror si de pair.

These REAL PI CTURES becone the non-li near connection to connect the tip and the tip of the cross, we make thema sol id when cr owded I i ke or i gami i nward each ot her in an occasi on and become I KOSOLI D.

We have the four-di mensi ons and the thr ee-di mensi onal points of cont act where two level s of crosses lead to at the surface of I KOSOLID endl essly.

The cross- shaped multilayer ed two di mensi onal body that was ar ranged these REAL PI CTUREs in length and breadth slippage in one pair of mirror sides to circul ate an end reply endl essly, is originally planelimited magic square of the squares .

Wth MAG C SQUARED PI CTURE which makes REAL PICTUREs exotic matter (a vehicle) connecting the five-dimensi onal world and the three-dimensi onal world, and which circul ates REAL PI CTUREs endlessly on thensel ves " MAG C SQUARED PI CTURE" that is carved a seal on I KOSOLI D. And wi th Pyt hagor ean theor em which uses $\sqrt{ } 2$ of the irrational number. These two important el ements let I KOSOLI D function as three-di mensi onal benzene.

In art making full use of thr ee di mensi onal infinity magi c square (=I KOSOLI D), I KOSOLI D SCI ENCE , that is the topol ogy whi ch for med that thr ee- di mensi onal wor I d exi stence can penetrate every di mensi on, was born.
In the three di mensi ons world, as for IKOSOLID usually cutting positrons by emission practical use in reality in space, because we can work 3 di mensions of Iinear junction as well as in the four dimensi ons in the world by I KOSOLID SCI ENCE.

These are reasons to think that IKOSOLID fits it as three-dimensi onal benzene.

* A note REAL PI CTURE • • a real i mage pi ct ure / The back and the Ii st that right and left, top and bottombecame the mirror side pair are totally the same pictures. ( Refer to the first and second articles.)

Jul y 28, 2009
Koei ENDO
I koyo ENDO

2, Characteristics of the wide connection in a solid

2-1 The wi de connection. The wide connections mirror side pair. Two ki nds of faces of two points of connection.
When we performthe wide connection with a solid, and connection bet ween I KOSOLI Dis next to each ot her called the mirror si de pair when become symmetric, it is connect ed two points. There are two faces in IKOSOLID next to each ot her of one pair of this mirror sides.

When 2 points in width are connected, the face that two big ri ght angle equilateral triangles are located in the upper part[1] Fi gure 1
Phot ogr aph1


When 2 points in width are connected, the face that two small right angle equilateral triangles are located in the upper part[ 2] Fi gure 2

Phot ogr aph 2


2-2 The wi de connection. 1 point non-mirror side pair connection: M DDLE

Wen we perf or mwi de connection with a sol id and I KOSOLI D next to each ot her at the age of a non-mirror si de pair, the connection bet ween IKOSOLID becomes one point connection. We treat this as "MDDLE". Even as for IKOSOLID of " M DOLE" as I KOSOLID which is next to the middleis a joint in a mirror side pair, the connection between IKOSOLID becomes two points of connection. In ot her words, I KOSOLID can express "middle" continued and the independent "middle"

Seei ng fromt he top, we under st and very well that connection of I KOSOLI D comes to al ways gather in the form of the square.
In the wi de connection of IKOSOLID next to each other, as for the connection bet ween the normal sol id benzene about the connection of the three-di mensi onal benzene of " M DDLE", seei ng fromt he si de, we see it for the 180 degr ees j oi ni ng , but, act ually, seei ng fromt he top, each ot her j oins it at an angle of 90 degr ees.


Department of $\bigcirc$ markis a connection loser in a left-hand figure
Fi gure 3

## Phot ogr aph 3 "MDDLE" is two of the third and the fourth from the left



The wi de connection that we wat ched fromt he top. The bot tomof this phot ogr aph is the front of phot ograph 3. Seeing fromthe front, we see each ot her for the joi ni ng of 180 degrees, act ually, we under st and that each j oi ns at an angle of 90 degrees by looking fromthe top.

Phot ogr aph 4 "M DCLE" is two of the $t$ hi $r d$ and the four $t h$ fromt he I eft . Each $j$ oi ns M DDLE to the common solid benzene at angle of 90 degrees.


3, The characteristics of the di agonal connection in a solid
3-1 The characteristic of the diagonal connection of the $\oplus$ body.
Lower left slippage line is the same shape continuation fromt he top right corner. (A principle)
Lower right slippage line is an al ternation variant froml eaning to the left. (A principle)
Wen junction of $a \oplus$ body and $a \ominus$ body and MDDLE get in, these principles produce the arrangenent except the principle.

Figure4


The characteristic of the di agonal connection of the $\oplus$ body

Phot ogr aph 5


3-2 The characteristic of the di agonal connection of the $\Theta$ body.
Li nes froml eani ng to the l eft tol ower right sli ppage, cont inuat ion of the same type (A principle)

Lines from the top right corner to lower left slippage, an alternation variant (A principle)


Figure 5

The characteristic of the di agonal connection of the $\Theta$ body.

Phot ogr aph 6


## $3-3 A$ char acteristic of the slippage connection that contai ned" MDDLE"



Figure6 Department of $\bigcirc$ mark is a connection loser.


Phot ogr aph 7


Phot ogr aph 8

A connecti on I oser
depar t ment of
" MDDLE" to look at a little from the top Phot ogr aph 9


Figure7 Department of $\bigcirc$ mark is a connection I oser.


Phot ogr aph10 We look fromthe right slippage a little.


Phot ograph11 We look from the top.
The upper part of the phot ogr aph (photograph 9) a list, this side is the top

We seem to have written it in "1, the purpose of this article",in the three- di mensi onal world like the four di mensi ons, we use I KOSOLID as the medi um to let $j$ oin of the linear shape in $\oplus$ body and $\Theta$ body.

Ther ef ore, I KOSOLI D becomes the four di mensi ons and the three-dimensi onal point of contact, and we describe REAL PI CTURE and MAG C SQUARE, in the surface of I KOSOLID, becoming the vehicle of transmissi on through the three di mensi onal di mensi on and 5 di mensi ons.

As for I KOSOLI D, the insi de is a hol l ow sol id. I KOSOLI D becomes the compl et e square when we remake this solid to a pl ane.
Thi s squar e has magi c square st at e. REAL PI CTURE is ar ranged in lengt $h$ and br eadt $h$ di agonally on it, in a mirror side pair but limitedly.

As for thi s REAL PI CTURE, the back si de is the sane as the surface. The number is cal cul at ed based on a formul a "KI. theorem" of $n=16 x^{2}$.

16 is needf ul the min mumnumber of sheets of the REAL PI CTURE with the I KOSOLI D fixed nunber.

The REAL PI CTURES become the cross of the multilayer ed two di mensi onal body, to change the limited magic square state of the square in infinite endless circulation perfectly.

The cross of this multilayer ed two- di mensi onal body is essence shape of I KOSOLI D. On two level s of crosses, a li st and the back have the t ot al ly same REAL PI CTURES, these REAL PI CTURES $j$ oi $n$ by the different di mensi ons to cont act with each of two levels of crosses and has a function to circul ate an end reply.

In other words, the REAL PI CTUREI is "exotic matter" (a vehicle: A thing to transmit to originally do linearization of the non-linear connection that cannot cross).


A pi ct ure ( phot ogr aph 12. The art name i s REAL SOLI D.) on whi ch I kuyo ENDO drew the cross of the multilayer ed two di mensi onal body whi ch was essence shape of I KOSOLI D.

The small picture which is in the lower right is the original picture of the REAL PI CTURE. Thi s original picture is symmetry on the right and left and top and bottom and a list and the back become the same REAL PI CTURE.

16 pi eces of REAL PI CTURE which are the I KOSOLI D fixed number are ar ranged to this picture in the shape of a cross.

Li near shape joins in the four dimensions and becomes the magic square circul ating through an infinite end reply as it is, but intis situation, in the three di mensi ons, it is non-linear junction.

As the cross of the multilayer ed two-di mensi onal body in the four di mensi ons, when it became a sol id as I KOSOLID inthree di mensi ons, on the surf ace of I KOSOLI D, thr ee- di mensi onal magic squar e consi sting of REAL PI CTURE in a mirror si de pair and circulating endl essly is formed.

The essence of the three-dimensi onal magic square of this eternity called I KOSOLID is a cross of the multilayer ed two di mensi ons body, besi des, even if it becones a solid.

We can bring about sci ence of the multidi mensi onal transmission so that this essence penetrates a di mensi on, and it is mai nt ai ned.

The cross of the two di mensi onal body multilayered as for "figure 8".It has access tolinear shape inthe four di mensi ons and becomes non-linear connection inthe thr ee di mensi ons, but by becoming I KOSOLID inthethr ee- di mensi onal world, it connects I i near shape with having mai nt ai ned the el ement of the cross of the four-di mensi onal multilayer ed two di mensi onal body. The mai nt ai ned el ement is that it is it with the three-dimensional magic square where REAL PI CTURE circul at es through an end reply endl essly on IKOSOLID as a mirror si de pair.
Thi s REAL PI CTURE becomes A vehicle that transmits di mensi on transmi ssion. Even if it becomes three- di mensi onal on IKOSOLI D, the cross of the multilayered t wo-di mensi onal body in the four di mensi ons does not just collapse, the REAL PI CTURE circul ates through an end reply as a mirror side pair.

## 図 8



1 and 8, 2 and 5, 3 and 6, 4 and 7 have access to a nonlinearity, while in this situation being non-linear in the thr ee-di mensi onal world, on I KOSOLI D, I i near shape joins and, the REAL PI CTURE cont i nues a mir ror side pair, infinite endl ess circul ation. Wen $1,2,3,4 \mathrm{pl}$ anes and $5,6,7,8$ pl anes become I KOSOLID, $1,2,3,4$ surface, $5,6,7,8$ back side come on the surface of IKOSOLID. Two pi eces of images of the cross are irregularity joi ning hands junction,
( The one si de surface back of the hand which j oi ns its hands. It is al ready one si de surface pal m) ther eby, "the backsi de" that is not in the three-dimensi onal world emerges on hal f surface of IKOSOLID (The three-dimensi onal world has only alist in substance.), but "the backsi de" emerges on half surface of IKOSOLID. (A half of the surface of IKOSOLID is a list and another is a back)

Ther ef ore science with I KOSOLID is to make an el ectron an openi ng body, and there can be "a positron" onl y inthe speci al space ( strong magnetic force space) inthe thr ee di mensi onal world whose di mensi ons are originally different fromits home ; "the positron" (e+) that we succeeded in makinng exsi sts and inflects in the usual space, and use.

6 , Junction of $\oplus$ body and $\Theta$ body by a solid, four ki nds



Fi gure 9
(1) The 1 " j oi ni ng hands j oi n between $\oplus$ large and $\square$ small"

(2) The 2 " j oi ni ng hands j oi n between $\Theta$ large and ©small"

(3) The 3 " $\ominus$ Si de flip $\oplus \oplus$ unction"

(4) The 4 " $\oplus$ Si de flip $\ominus$ Junction"


6-1 The junction of $\oplus$ body and $\Theta$ body by a sol id.

- . The 1 " Join ni hg hands $j$ unction of $\oplus \mid$ ar ge and $\square$ small $I$ "


Figure 10
" Join ni ing hands junction of $\oplus$ I ar ge and $\square$ small"

$$
6-1-a \quad \text { II } \text { ustrat } i \text { on }
$$

The 1 " Join ni ing hands junction of $\oplus \mid$ ar ge and $\square$ small I"



The back of $\oplus$ hand si de of the j oi ing hands is located in the face surface, The back of $\Theta$ hand side of the j oi ni ing hands is locate ed in the backside
 surface. " Join ni ing hands $j$ unction of $\oplus$ I large and $\square$ small"

Figure 11

6-1-b $\oplus$ si de is located in the face surface. "Joining hands junction of $\oplus \mathrm{l}$ arge and $\square \mathrm{smal}$ I"



Phot ogr aph 13
Looking from of the backsi de surface. "Joi ni ng hands junction of $\oplus 1$ arge and $\square$ smal I"


Phot ogr aph 14

6-1 - c The side joint of "Joining hands junction of $\oplus$ large and $\square$ small"

Seen from $\oplus$ si de of the face surface, it is left side surface $j$ oint. In fact, the si de becomes the three- di mensi onal benzene, too.

Phot ogr aph
15


Looking fromt he top. The upper part of the phot ogr aph is $\oplus$ si de of the face surface. I KOSOLI D next to each ot her connects 90 degrees. Ther ef ore I KOSOLI DS are connected in the shape of a square in two lines coming simltaneously.


Phot ogr aph 16

6-2 The junction of $\oplus$ body and $\Theta$ body by a sol id.
-• The 2 " Join ni ing hands junction of $\Theta$ ar ge and small"


Fig gure1 2 "Join ni hg hands j unct i on of $\Theta \mathrm{l}$ ar ge and small I"


$\oplus \Theta$


Fig gre 3

The back of $\Theta$ hand si de of the joining hands is l cat ed in the face surf ace, The back of $\oplus$ hand si de of the joining hands is located in the backside surface. " Joining hands junction of $\ominus \mathrm{l}$ age and $\oplus$ small I"
$6-2-b \quad \ominus$ si de is located in the face surface. "Joining hands junction of $\Theta 1$ arge and ©small"



Phot ogr aph 17
Looki ng from $\oplus$ of the backsi de surf ace. " Joi ni ng hands junction of $\ominus 1$ arge and ©small"


Phot ogr aph 18

6-2 - c The left side surface joint from $\ominus$ side of the face surface. In fact, the si de becomes the three-dimensi onal benzene, too.


Phot ogr aph 19

Looking fromt he top. The upper part of the phot ogr aph is $\Theta$ si de of the face surface. I KOSOLI D next to each ot her connects 90 degr ees. Ther ef ore I KOSOLI DS are connected in the shape of a square in two lines coming simltaneously.
Phot ogr aph 20


6 - 3 The junction of $\oplus$ body and $\Theta$ body by a sol id.
-•The 3 " $\ominus$ Si de flip. $\oplus \oplus$ unction"


Figure1 4 " $\Theta$ Si de flip. $\oplus \oplus$ unction"

6-3-a III ustration" $\ominus$ Si de flip. $\oplus \oplus$ unction"




Because $\Theta$ turned into $\oplus$
$\oplus j$ oins $\oplus$.

6-3-b " $\ominus$ Si de flip. $\oplus \oplus$ unction"


Phot ogr aph 21

6-4 The junction of $\oplus$ body and $\Theta$ body by a sol id.
-•The 4 " $\oplus$ Si de flip. $\Theta$ Junction"


Figure 6 " $\oplus$ Si de flip. $\Theta$ Junction"

6-4-a Illustration " $\oplus$ Si de flip. $\Theta$ Junction"


## Fig gure1 7



We flip $\oplus$ si de and change it into l.


Because $\oplus$ turned into $\square$,
$\square$ joins $\Theta$.

6-4-b " $\oplus$ Si de flip. $\Theta$ JJunction"



Phot ogr aph 22


[^0]:    Septimal notation structure (1:6) of SEPTIMALNOTATION IKOSOLID $2^{3}$

[^1]:    * Refer to Specification A of a counter for pulse oscillator, Counter external view A, Operation explanation, and Counter block diagram on the following pages.

