The 90 degree topol ogical transformation with IK OSOLID

The unifying revolution to the foundations on quantum mechanics

IKOSOLID as a conductor

February, 2011

K.I.REASERCH INSTITUTE
Koei Endo
Ikuyo Endo

The 90 degree topol ogical transformation with IKOSOLID

The unifying revolution to the foundations on quantum mechanics
80-100 years before, the quantum mechanics have been born with Dr. Bohr, Dr. Heisenberg and Dr. Schroedinger as the completely new revolutionary physics. However, as the founder of quantum theory the beginning of the quantum mechanics is Dr. Max Karl Ernst Ludwig Planck. He also let out unknown Albert Einstein to the world.

However, there were several interpretations at the beginning of the quantum mechanics. The mainstream is Copenhagen interpretation. Besides, there are Manyworlds Interpretation, Transactional Interpretation and so on.
By the 90 degree topological transformation with IKOSOLID, IKOSOLID SCIENCE gives the unifying revolution to the foundations on quantum mechanics.
Then, the revolution of the completely new physics which exceeds quantum mechanics now starts. However, the state of the existence of the positron (the antiparticle) is in the reverse of the electron (particle) and in the state of 90 degree phase to electron (particle).Therefore, the positron (the antiparticle) appears obediently in the three-dimensional world by the 90 degree topological transformation and turning a face of positron to the face side with IKOSOLID.
As a result the positron made by 90 degree topological transformation with KOSOLID becomes the outbreak-effect of positron without the pair annihilation of positron and electron.There is not a 90 degree topological transformation in the positron which is formed with the actuator. Therefore, it makes the pair annihilation of positron and electron. In the way of the occurrence, the difference of the positron made by 90 degree topological transformation and the positron formed with the actuator without 90 degree topological transformation becomes very important.
However, in the present age thing reason, the high-energy physics (the elementary particle experimental physics) is mainstream. Therefore, if adding a 90 degree topological transformation by IKOSOLID as a conductor to the actuator experiment, the revolution happens to the high-energy physics (the elementary particle experimental physics). It proposes to introduce the 90 degree topological transformation which depends on IKOSOLID into the actuator experiment. As a result, the decisive result of the quantum mechanics which the scientist all over the world craves should appear.
Our research is about electron and the positron. Experimentally on the actuator, it is possible to do an experiment on particle and the antiparticle including electron and the positron, too.
IKOSOLID SCIENCE can light up present-day science in the mathematical principle. By the 90 degree topological transformation with IKOSOLID, IKOSOLID SCIENCE gives the unifying revolution to the foundations on quantum mechanics.

February, 2011	K.I.RESEARCH IN	INSTITUTE
	Koei	ei Endo
	Ikuyo	yo Endo
49-1 Higashi-ishido	rano-aza lizaka-mach	achi
Fukushima-City Fuku e-mail koei	hima-Pref. 960-0231 @msi.biglobe.ne.jp	31 Japan
Telephone 024-542-50	7 Fax 024-542-0901	

Contents

1. The wiring diagram
2. The list figure of the decrease and the zeroizing of the electric current and the voltage by the continuation measurement experiment 6
A. The proof of the 90 degree topological transformation with IKOSOLID by measurement experiment 1,2.
A-1 *Note Measurement experiment 1
A-2 Measurement experiment 2
A-3 The proof of the 90 degree topological transformation with IKOSOLID.
B. The condition of the 90 degree phase with IKOSOLID as the conductor.

B-1 "The multiple two dimensions body"
B-2 As IKOSOLID maintaines the characteristic of the multiple two
B-3 The conclusion of the 90 degree topological transformation with IKOSOLID, as it maintains the characteristic of the multiple two dimensions body
B-4 REAL IMAGE PICTURE : The origin of the foundation on IKOSOLID SCIENCE.
C. The proof of the 90 degree topological transformation with IKOSOLID by measurementexperiment $3,4,5,6$.
C-1 Measurement experiment 3
C-2 Measurement experiment 4
C-3 Measurement experiment 5
C-4 Measurement experiment 6
D. Proof of the condition of the 90 degree phase and the practical use of the 90 degree topological transformation with the syndetic structure of IKOSOLID as the conductor 19
D-1 Proof of the 90 degree phase and the 90 degree topological transformation with IKOSOLID on XY figure
D-2 It projects the usual square which doesn't have a 90 degree topological transformation onto usual solidness.
D-3 It projects the square which changed in the quality with 90 degree topological transformation by IKOSOLID onto usual solidness.
D-4 It projects the usual body-centered cubic structure which has minus-SEPTIMALNOTATION of 1:-8 without 90 degree topological transformation by IKOSOLID onto usual solidness.
D-5 The square (SEPTIMALNOTATION of $1: 6$) which changed in the quality with 90 degree topological transformation by IKOSOLID. And the body-centered cubic structure (minus-SEPTIMALNOTATION of 1:-8) which changed in the quality with 90 degree topological transformation by IKOSOLID = Opened body-centered cubic structure .
D-6 The fundamental form of the three-dimensional 8 directions (4 directions of the length, 4 directions of the diagonal side. IKOSOLID minus-SEPTIMALNOTATION of X^{3} of $1:-8$)
D-7 The fundamental form of the lump of IKOSOLID
The attachment:
The ampere-hour meter measured data A April 4th in 2006 11:40-11:50
The ampere-hour meter measured data B March 30th in 2006 14:35~14:40
The amperehour meter measured data B March 14th in 2006 16:00~16:30 (30 minutes)
The ampere-hour meter measured data $\mathrm{C}^{-} \mathrm{b}$
The ampere-hour meter measured data D E F

* Note Measurement experiment

The purpose of measurement experiment $1 \sim 6$ is the resonance experiment between the shake of the earthquake in the earth and IKOSOLID. When IKOSOLID and the earthquake vibration resonate, the value of the ampere-hour meter changes.
To experiment, the center-point which shows a significant level in the x, y figure is seen. The center-point which shows this significant level becomes doorway of the back (the place of the positron) and of the table (the place of the electron)of mirror. The expression of mirror means a boundary in the place of the imaginary number and the place with the real number.

With the 90 degree topological transformation with IKOSOLID, the imaginary number (the world in mirror) becomes the real number (out of mirror) or the real number (out of mirror) becomes the imaginary number (the world in mirror).

```
Measurement experiment 1-6 Just like White Hole or Black Hole!
    1 • • From the reverse side, - var is out of mirror VA \(=-\operatorname{var}(-90\) DEG.)
                        0.130 m VA \(=-0.130 \mathrm{~m} \operatorname{var}(-90 \mathrm{DEG}\).
    2. • From face side, VA is into mirror VA = var (o.r DEG.)
        0.000 m VA \(=0.000 \mathrm{mvar}\) ( o.r DEG.)
    \(3 \cdot \cdot\) From the reverse side, VA is out of mirror (=Point \(=\) Hole)
        \(2.257 \mathrm{v} \times 0.0000 \mathrm{~mA} \Rightarrow 0.066 \mathrm{mVA}\)
    4 • • From the reverse side, voltage is out of mirror (=Point \(=\) Hole) \(2.2 \mathrm{v} \Rightarrow 4.573 \mathrm{v}\)
    \(5 \cdot\). From the face side,voltage is into mirror (=Point \(=\) Hole) \(2.2 \mathrm{v} \Rightarrow 0.281 \mathrm{v}\)
    6 • . From the face side,voltage is into mirror (=Point \(=\) Hole)
    \(2.2 \mathrm{v} \Rightarrow 0.000 \mathrm{v}(72.921 \mathrm{~Hz}) \quad 2.2 \mathrm{v} \Rightarrow 0.000 \mathrm{v}(2.0832 \mathrm{~Hz})\)
```


1. The wiring diagram of Measurement experiment 1,2,3,4,5,6

Reference: ThemeA (3)study c.p.t.f.p.a part -5 (3.31MB)/part - 9

Figure a-3 wiring diagram

1-2 The ampere-hour meter (entry/output The opposite connection The occurrence of the phase-inversion)

Figure a-9 ampere-hour meter
The opposite connection

1-3 The ampere-hour meter (The ordinary connection)

The input-resistance of
the side of the electric current $2 \mathrm{~m} \Omega$

Excerpting from the purpose of paper -9th

Reference: study c.p.t.f.p.a part -9
In these measurement experiments, using the combination of IKOSOLID (minus-SEPTIMALNOTATION of X^{3} of $1:-8$ as the feature structure : the three-dimensional 8 directions [4 directions of the length, 4 directions of the diagonal side]) and REAL CUBE (SEPTIMALNOTATION of X^{3} of $1: 6$ as the outer fence structure : the three-dimensional 6 directions [2 directions of the length, 4 directions of the side] .The human body puts in the Central of REAL CUBE.), two measurement experiments are described.
These are " Dilution with electric current and voltage" and "Zeroizing with electric current and voltage and the immobilization after the frequency drift just like the occurrence of BLACK HOLE "
This has a purpose of zero changing in the electromagnetism by doing the frequency specifying becoming of the postfixation. When zero piece of electromagnetism changes instantly, the teleportation with electromagnetism and m mass occurs. This teleportation is that the occurrence of BLACK HLOE. With the 90 degree topological transformation with IKOSOLID, the real number (out of mirror = Point = Hole) becomes the imaginary number (the world in mirror $=$ Point $=$ Hole).

For this coming to practical use, it is working on the electromagnetism and the shake of the earth earthquake almost. This practical use is realized and it succeeds in the before anything happens occurrence prevention and the relaxation of the disaster (the earthquake, the typhoon, hurricane and so on) of the earth level. Mainly in J apan, it installs REAL CUBE in world each place and it is preventing an earthquake, a typhoon and hurricane realistically. Far, it will make the safing of the atomic energy, the fusion, gamma ray and so on, too, possible. IKOSOLID SCIENCE can do to prevent from the natural disaster of the earth level beforehand and the relaxation of it. As the result, it succeeded in Unification of the electromagnetic willpower and Gravity of four-power of the space. Therefore we are convinced that the Tokyo vertical thrust big earthquake succeeds in preventing beforehand in IKOSOLID. If the Tokyo vertical thrust big earthquake occurs, the J apanese economy destroys. Since occurrence estimate of the Tokyo earthquake with a vertical shock in 2005, it tackled to do the prevention beforehand. Reference:Theme B (1) popularization plan of real cube(1.22MB)/ Theme B (2) -1 *unification e.w.g.f.f.s.s.p $1 / 2(5.08 \mathrm{MB}$) $2 / 2(6.84 \mathrm{MB}$)

This measurement experiment had a purpose of IKOSOLID and REAL CUBE group's resonating with the electromagnetism and the shake of the earthquake in the earth and specifying a frequency with them. As a result, it succeeded in the electromagnetic (the electric current and the voltage) dilution and the zeroizing. This is the success of BLACK HOLE with electric current and voltage by IKOSOLID SCIENCE.

A. The proof of the 90 degree topological transformation with IKOSOLID by measurement experiment 1,2

Reference: ThemeA (3)study c.p.t.f.p.a part -5 (3.31MB)

A -1 Measurement experiment 1

Ampere-hour meter connected to be opposite to the line. The wiring diagram p. 5 $\mathrm{VA}=-\operatorname{var}$ (-90 DEG .) LED lights up!
(Apparent-power $0.130 \mathrm{mVA}=-$ Reactive-power $-0.130 \mathrm{mvar},-90$ DEG.)
MANLAL

2.241 V	0.0580 mA	0.100 mAP
0.000 mW	0.130 mVA	-0.130 mvar
$-0.0000(\mathrm{PF})$	-90.00 DEG	50.035 Hz

Experiment a-3 The ampere-hour meter data A April 4th in 2006 (p. 7 of Theme A (3)study c.p.t.f.p.a part 5) • • It attaches to page 28. By paying attention to the change of the power factor, the elapse of"-var is out of mirror "can be seen.

It "VA = - var (-90 DEG.)" is expressed as the perpendicular line in the state of the phase of - 90 degrees from the reverse.
With the 90 degree topological transformation with IKOSOLID, the imaginary number (the world in mirror) becomes the real number (out of mirror).

A-2 Measurement experiment 2

- Ampere-hour meter connected to be ordinary to the line. The wiring diagram p. 5
$\mathrm{VA}=\operatorname{var}$ (o.r DEG.) LED lights up!
(Apparent-power $0.000 \mathrm{mVA}=$ Reactive-power 0.000 mvar (o.r DEG.)
MANUAL

2.196 V	0.0000 mA	0.000 mAp
0.000 mW	0.000 mVA	0.000 mvar
$0 . r(\mathrm{PF})$	$0 . r \mathrm{DEG}$	49.980 Hz

Part - 5 The ampere-hour meter data B March 30th in 2006 (p. 12 of Theme A (3)study c.p.t.f.p.a part -5) . . It attaches to page 29 Bypaying attention to the change of the power factor, the elapse of "VA is into of mirror "can be seen.

It "VA = var (o.r DEG.)" is expressed a point from the face.
With the 90 degree topological transformation with IKOSOLID, the real number (out of mirror) becomes the imaginary number (the world in mirror).

A-3 The proof of the 90 degree topological transformation with IKOSOLID.
From the reverse side, - var is out of mirror From face side, VA is into mirror $\begin{array}{cc}\mathrm{VA}=-\operatorname{var}(-90 \mathrm{DEG.}) & \leftrightarrows \quad \mathrm{VA}=\operatorname{var}(0 . \mathrm{VDEG.)} \\ 0.130 \mathrm{mVA}=-0.130 \mathrm{mvar} & 0.000 \mathrm{mVA}=0.000 \mathrm{mvar}\end{array}$

With the 90 degree topological transformation with IKOSOLID, the imaginary number (the world in mirror) becomes the real number (out of mirror) or the real number (out of mirror) becomes the imaginary number (the world in mirror).

B. The condition of the 90 degree phase with IKOSOLID as the conductor.

IKOSOLID has two faces. One is a multiple two dimensions body as the essence. Another is solid IKOSOLID as the feature body.
The important thing is that solid IKOSOLID maintains the feature of the multiple two dimensions body. That is, IKOSOLID has the feature of two connections at the same time. It is a nonlinear connection and a linear connection. In other words, it is possible to do a four dimensions connection and a two dimensions connection that is actually 3-D connection in the three-dimensional world at the same time.

B-1 "The multiple two dimensions body"

The multiple two dimensions body in the condition of the 90 degree phase. Particle and the antiparticle are in a nonlinear state of the connection.

The place of the antiparticle is in this reverse.

The place of particle in the surface.

The place of particle is in the surface. The place of the antiparticle is in this reverse.

B-2 As IKOSOLID maintaines the characteristic of the multiple two dimensions body, it makes solid.

B-3 The conclusion of the 90 degree topological transformation with IKOSOLID, as it maintains the characteristic of the multiple two dimensions body
Particle and the antiparticle become in a linear state of the connection as it maintains the nonlinear state of the connection of the multiple two dimensions body in the condition of the 90 degree phase.

IKOSOLID

Because the 90 degree topological transformation which depends on IKOSOLID has the feature of the multiple two dimensions body, it doesn't make the pair annihilation of the

antiparticle and particle. Reference: ThemeA (3)study c.p.t.f.p.a parts \& 10
That is, IKOSOLID can be seen in the solidness but the essence is a multiple two dimensions body. IKOSOLID can do two connections of the linear connection (3-D connection) and the nonlinear connection (the four dimensions connection).

B-4 REAL IMAGE PICTURE : The origin of the foundation on IKOSOLID SCIENCE.

The point that IKOSOLID is different from the other solidness is in the ability for a 90 degree topol ogical transformation to be made. The difference comes from the feature of the picture of art. The maximum feature of the picture is to function, not concerning to do nothing which has the existence of the person who sees a picture. The picture exists only and functions. It is the same as orb's existing only and functioning. Functionality of this picture is in the starting point of the 90 degree topological transformation of IKOSOLID. The picture in this case is called "REAL IMAGE PICTURE". 16 minimum REAL IMAGE PICTURES exist in the surface of one IKOSOLID. Therefore, 16 is IKOSOLID's fixed number. Among the marching REAL IMAGE PICTURES, it is in the relation with one pair of mirror surfaces and in the surface of IKOSOLID, the endless circulates. Reference: Theme B (3) study c.p.t.f.p.a part $1 \& 2$
It becomes a REAL IMAGE PICTURE in the picture and in to be, the picture becomes direct mathematics like the orb. As for the REAL IMAGE PICTURE, the 720 degree phase turns. REAL IMAGE PICTURE, MAGIC SQUARE PICTURE, the multiple two dimensions body (The cross at the flyover), IKOSOLID and the syndetic structure of IKOSOLID. Reference: Theme B (3)study c.p.t.f.p.a part $1 \sim 10$

ORIGINAL PICTURE of numbers

SYMMETRY of numbers

Reference: Theme B (3)study c.p.t.f.p.a part 2

REAL IMAGE PICTURE of numbers

The picture that the back and the table are the same completely

$\overline{9}$	1	8	8	1	é
L	G	ε	3	2	\pm
乙	$\overline{6}$	力	＋	己	5
s	\bigcirc	＋	4	9	2
f	己	ε	3	5	7
2	1	8	8	1	6

720 degree phase rotation

Reference ：Theme B（3）study c．p．t．f．p．a part 2

MAGIC SQUARE PICTURE The picture that the back and the table are the same completely
A magic square picture of the plane：The circulation（with REAL IMAGE PICTURE）which is finite because there is an outer fence
＂＂＇The plane two dimensions body is just like the three－dimensional SPACE＂

g	1	8	8	8	1	ė		9	1	8	8		J	e	9	1		8	8	1	é	9	1	8	8	1	e
4	5	ε	E	3	2	\＄		L	5	ε	ع 3		2	\＄	L	9	G	ε	3	2	¢	4	5	ε	3	2	d
τ	6	\rightarrow	${ }_{7}$	＋	d	5		τ	6	力	＋		$\bar{\delta}$	J	τ	6	¢ +	力	＋	d	J	て	6	＋	＋	d	5
s	？	＋	4	4	9	2		\bigcirc	9	$+$	4		2	2	\bigcirc	9	\bigcirc	$+$	4	？	2	\bigcirc	9	$+$	4	9	2
F	ट	ε	E	3	5	7		f	己	ε	E 3		5	7	F	己		ε	3	5	7	F	è	ε	3	5	7
a	t	8	8	8	1	6		a	1	8	8		1	6	？			8	8	1	6	2	1	8	8	1	6
9	1	8	8	8	1	é		9	1	8	8		1	¢	9	1		8	8	1	è	9	1	8	8	1	é
t	5	ε	ε	3	2	d		L	5	ε	3		2	\pm	L	5		ε	3	2	\＄	L	5	ε	3	2	3
τ	6	力		＋	ई	J		τ	6	＋	＋		ठ	5	亿	6		サ	＋	¢	δ	乙	6	خ	＋	ठ	J
s	ρ	\dagger	4	4	9	2		\＆	9	$+$			8	2	5	8		4	4	9	2	S	ρ	＋	4	9	2
F	を	ε	E	3	5	7		F	己	ε	3		5	7	7	ट		ε	3	5	7	F	を	ε	3	5	7
a	t	8	8	8	1	6		a	1	8	8		1	6	O	1		8	8	1	6	a	1	8	8	1	6
9	1	8	818	8	1	é		9	1	8	8		1	é	¢	1		8	8	1	é	9	1	8	8	1	ė
t	5	ε	ε	3	2	\pm		t	5	ε	3		2	\pm	L	5		ε	3	2	d	L	5	ε	3	2	\pm
τ	$\overline{6}$	力	力	＋	亏	5		τ	$\overline{6}$	म	＋		δ	5	\checkmark	6		力	$\stackrel{+}{+}$	δ	5	τ	6	＋	＋	δ	5
Ω	？	$\stackrel{+}{4}$	$4+$	4	9	2		s	9				9	2	\bigcirc	！		＋	4	9	2	s	9	＋	4	$?$	2
F	己	ε	E 3	3	5	7		7	己	ε	\％		5	7	F	己		€	3	5	7	f	ट	E	3	5	7
2	1	8	88	8	1	6		a	1	8	8		1	6	a	1		8	8	1	6	？	1	8	8	1	6
¢	1	8	8	8	1	ė		5	1	8	8		1	é	9	1			8	1	é	9	1	8	8	1	e
L	5	ε	E 3	3	2	\＄		t	5	ε	E 3		2	\pm	L	5		ε	3	2	5	t	5	ε	3	2	\pm
τ	6	†	－	＋	ס	J		τ	6	力	\dagger		δ	5	τ	6		＋	＋	ठ	5	\checkmark	6	力	＋	δ	J
\bigcirc	9	4	4	4	9	2		s	¢	＋			2	2	$\stackrel{5}{5}$	9			4	$?$	2	s	9	ψ	4	9	2
f	己	ε	3	3	5	7		7	己	ε	3		5	7	F	c		ε	3	5	7	f	己	ε	3	5	7
a	1	8	8	8	1	6		a	t	8	8		1	6	a	1		8	8	1	6	a	t	8	8	1	6

$$
\mathrm{n}=16 \mathrm{x}^{2}
$$

$$
1^{2} \times 16=\mathrm{n}
$$

$$
1^{2} \times 16=16
$$

9	1	8	8	1	e
t	5	ε	3	2	7
	6	7	+	5	5
9	9	4	4	2	2
7	c	ε	3	5	7
a	1	8	8	1	6

Real image picture

It divides one MAGIC SQUARE PICTURE into two．

＂It divides＂＂The plane two dimensions body＝the three－dimensional SPACE＂ into two

9	1	8	8	1	e	9	1	8	8	1	e
4	－	ε	3	2	d	t	5	ε	3	2	5
τ	6	\rightarrow	＋	δ	J	τ	$\overline{6}$	म	त	б	5
s	9	＋	4	9	2	5	9	4	4	9	2
F	ट	ε	3	5	7	f	己	ε	3	5	7
？	t	8	8	1	6	oे	I	8	8	1	6
9	1	8	8	1	é	9	1	8	8	1	e
t	5	ε	3	2	s	2	5	ε	3	2	\pm
τ	6	力	t	¢	J	τ	6	＋	＋	万	5
\bigcirc	ρ	4	4	9	2	Ω	9	$+$	4	？	2
F	を	ε	3	5	7	γ	己	ε	3	5	7
a	t	8	8	1	6	2	1	8	8	1	6
9	1	8	8	1	e	9	1	8	8	1	e
t	5	ε	3	2	\＄	L	5	ε	3	2	S
τ	\％	न	＋	万	5	τ	6	\＃	＋	ร	J
9	？	4	4	9	2	s	9	4	4	9	
F	e	ε	3	5	7	7	己	ε	3	5	7
2	1	8	8	1	6	a	t	8	8	1	6
9	1	8	8	1	é	9	1	8	8	1	e
L	5	ε	3	2	d	t	5	ε	3	2	$\$$
τ	$\overline{6}$	中	＋	¢	5	τ	6	н	＋	ई	J
\checkmark	9	4	4	2	2	\bigcirc	9	4	4	$?$	2
f	己	ε	3	5	7	1	己	ε	3	5	7
$\stackrel{\square}{2}$	1	8	8	1	6	2	I	8	8	1	6

\pm	\pm
＋	4
$\stackrel{ }{+}$	＋
4	4
\rightarrow	＋
4	4
$\stackrel{ }{+}$	$\stackrel{ }{+}$
＋	\uparrow

The length and the side It makes just like a SPACE and an anti－UNIVERSE．

The condition of the multiple two dimensions body

The cross of the flyover condition. The multiple two dimensions body SPACE with 90 degree phase. All polygonal lines become the symmetry of mirror.

This connection becomes the 90 degree topological transformation.

REAL IMAGE PICTURE of numbers

 which circulates in the endless condition on IKOSOLID./KOSOL ID = The solid magic square : The infinite circulation of REAL IMAGE PICTURE by the condition with one pair of mirror surfaces.

With the 90 degree topological transformation with IKOSOLID, the imaginary number (the world in mirror) becomes the real number (out of mirror) or the real number (out of mirror) becomes the imaginary number (the world in mirror)

REAL IMAGE PICTURE and IKOSOLID

REAL IMAGE PICTURE is the picture that the back and the table are the same completely．

REAL IMAGE PICTURE of pictorial art

REAL IMAGE PICTURE of point－numbers

REAL IMAGE PICTURE

of numbers

9	1	8	8	1	é
L	5	ε	3	2	\pm
て	$\overline{6}$	力	＋	ठ	5
\bigcirc	9	$+$	4	9	2
F	己	ε	3	5	7
$\underline{\partial}$	1	8	8	1	6

（c）

IKOSOLID The solid magic square
IKOSOLID is the solidness which has the door which joins the back and a table． This door is in the condition of the 90 degree phase．The door opens by the 90 degree topological transformation with IK OSOL ID．

Reference：Theme B（3）study c．p．t．f．p．a part 2
C. The proof of the 90 degree topological transformation with IKOSOLID by measurement experiment 3,4,5,6

Mirror $=$ Point (The center-point of the $x y$ figure)
C-1 Measurement experiment 3
Ampere-hour meter connected to be ordinary to the line.

The wiring diagram p. 5

From the reverse side,
VA is out of mirror (=Point)

$$
2.257 \mathrm{~V} \times 0.0000 \mathrm{~mA} \Rightarrow 0.066 \mathrm{mVA}
$$

$2.257 \mathrm{~V} \times 0.000 \mathrm{~mA}=0 \mathrm{VA}<0.066 \mathrm{mVA}$
With the 90 degree topological transformation with IKOSOLID, the imaginary number (the world in mirror = Point) becomes the real number (out of mirror =Point).

LED lighting-up!
MANUAL. March 14th in 2006 16:00~16:30 (30 minutes)

2.257 V	0.0000 mA	0.0000 mAP
0.066 mwl	0.066 mVA	0.000 mvar
$1.0000(\mathrm{PF})$	0.00 DEG	49.985 Hz

Experiment a-2 The ampere-hour meter data B March 14th in 2006(p. 23 of ThemeA (3)study c.p.t.f.p.a part -5)
. . It attaches to page 30. By paying attention to the change of the power factor, the elapse of "VA is out of mirror (=Point) "can be seen.

C-2 Measurement experiment 4

Ampere-hour meter connected to be ordinary to the line. The wiring diagram p. 5

V is out of Mirror(=point)

J une 23rd 01:25 in 2006
MANUAL
4.573 V
0.0000 mA
0.000 mVA
$0 . r \mathrm{DEG}$
0.000 mAP
0.000 muar
49.976 Hz

The ampere-hour meter data C'b (p. 5 of study c.p.t.f.p.a part -9)

[^0]
C-3 Measurement experiment 5

Ampere-hour meter connected to be opposite to the line. The wiring diagram p. 5

With the 90 degree topological transformation with IKOSOLID, the real number (out of mirror = Point) becomes the imaginary number (the world in mirror = Point). It attaches to page32. By paying attention to the change of the voltage, the elapse of " voltage is into mirror(=Point) "can be seen.

C-4 Measurement experiment 6

Ampere-hour meter connected to be ordinary to the line. The wiring diagramp. 5
(90

With the 90 degree topological transformation with IKOSOLID, the real number (out of mirror =Point) becomes the imaginary number (the world in mirror =Point). It attaches to page 32. By paying attention to the change of the voltage, the elapse of " voltage is into mirror(=Point) "can be seen.
D. Proof of the condition of the 90 degree phase and the practical use of the 90 degree topological transformation with the syndetic structure of IK OSOLID as the conductor.

Reference: ThemeA (3)study c.p.t.f.p.a part -5 (3.31MB)

The three-dimensional 8 derections (4 directions of the length, 4 directions of the diagonal side.

IKOSOLID
minus-SEPTIMAL NOTATION of X^{3}
of $1:-8$)
as a conductor

The three-dimensional 6 directions (2 directions of the length, 4 directions of the side)

Reference : Theme B (3)study c.p.t.f.p.a part 5


```
IKOSOLID
    SEPTIMALNOTATION
        of }\mp@subsup{X}{}{3}\mathrm{ of 1:6)
        as a conductor
```


D-1 Proof of the 90 degree phase and the 90 degree topological transformation with IKOSOLID on XY figure

The three-dimensional notation

Figure time- 1

The two-dimensional notation
(The perspective overlaps
about 2 and -7)

(The perspective overlaps

Figure time-3

The three-dimensional 8 derections
4 directions of the length $-5,-6,-7 .-8$
4 directions of the diagonal side - I, - II, - III, -IV The mirror surface (The boundary in the back and the table)

$$
\begin{aligned}
& -180^{\circ} \leftrightarrow-0^{\circ}, 180^{\circ} \leftrightarrow 0^{\circ}=X \text { axis, } \\
& -90^{\circ} \leftrightarrow \quad 90^{\circ}=Y \text { axis }
\end{aligned}
$$

Central point is the point with feature of the 90 degree topological transformation

Proof of the 90 degree phase: The vertical axis " $-5 \&-7$ " is in the phase condition of 90 degrees to X axis or Y axis. Proof of The 90 degree topological transformation : The success of the measurement of -130 mvar . This means the measurement of Gravity. Reference : Theme A (3study c.p.t.f.p.a part -5 (3.31MB)

D-2 It projects the usual square which doesn't have a 90

 degree topological transformation onto usual solidness.Reference: study c.p.t.f.p.a part -6
The usual square (= the plane two dimensions body) is the prototype in the three dimensions world. In the plane two dimensions body there are only X axis(Either side) and Y axis (The front and the rear) and the Zaxis(The top and the bottom) is hidden in the surface center-point.
a.The usual square which has SEPTIMALNOTATION of $1: 6$
without 90 degree topological transformation

b. It projects usual square(the plane two dimensions body) onto usual solidness .

Figure 2-b-1

Figure 2-b-2
c. X axis, Y axis and Z axis which have SEPTIMALNOTATION of $1: 6$ without IKOSOLID can not go out of usual solidness and are confined there.

D-3 It projects the square which changed in the quality with 90 degree topological transformation by IKOSOLID onto usual solidness.

Reference: studv con.t.f.n.a nart -6
a.The square which changed in the quality with 90 degree topological transformation bv IKOSOLID with SEPTIMALNOTATION of $1: 6$

b.The square which changed in the quality penetrates into usual square

c.It projects the square which changed in the quality onto usual solidness.

When usual solidness becomes the solidness which changed in the quality, usual solidness becomes a trace.

Figure $3-\mathrm{c}-2$
d.The solidness which changed in the quality penetrates into the trace of usual solidness.

```
1 : 6
1= (1)
(1)is the point with feature of
the 90 degree topological
transformation
6=1 ~6
```


D-4 It projects the usual body-centered cubic structure which

 has minus-SEPTIMALNOTATION of 1:-8 without 90 degree topological transformation by IKOSOLID onto usual solidness.a. The usual body-centered cubic structure which has minus-SEPTIMALNOTATION of $1:-8$ was confined to the solidness

```
1:-8
1 = (1) (1) is the point
without feature of the 90
degree topological
transformation
-8=-1~-8
```


Reference: study c.p.t.f.p.a part -6

Closed body-centered cubic structure

Figure 4-a-1

b. It projects the usual body-centered cubic structure onto usual square.

C. It projects usual square (Figure 4-b-1 \& Figure 4-b-2) onto usual solidness.

In usual solidness, because it lurks, usual body-centered cubic structure can not clarify. It isn't possible to be eloquent of minus-SEPTIMALNOTATION of $1:-8$.

D-5 The square (SEPTIMALNOTATION of $1: 6$) which changed in the quality with 90 degree topological transformation by IKOSOLID . And the body-centered cubic structure (minus-SEPTIMALNOTATION of $1:-8$) which changed in the quality with 90 degree topological transformation by IKOSOLID = Opened body-centered cubic structure .
a. The body-centered cubic structure (minus-SEPTIMALNOTATION of $1:-8$) which changed in the quality with 90 degree topological transformation by IKOSOLID = Opened body-centered cubic structure

$$
\begin{aligned}
& 1:-8 \\
& 1=(1) 1 \text { is the point with } \\
& \text { feature of the } 90 \text { degree } \\
& \text { topological transformation } \\
& -8=-1 \sim-8
\end{aligned}
$$

Reference : study c.p.t.f.p.a part -6
Opened body-centered cubic structure by IKOSOLID
(1) is the point with feature of the 90 degree topological transformation

Figure 5-a-1
b. It projects opened body-centered cubic structure(minus-SEPTIMALNOTATION of 1 : - 8) which changed in the quality onto the square (SEPTIMALNOTATION of $1: 6$) which changed in the quality.

Figure 5-b-1
Usual square trace

Figure 5-b-2
c. In opened body-centered cubic structure, projected square which changed in the quality penetrates into Usual square trace

Figure 5-c-1

d. It projects square which changed in the quality (Figure 5-b-1 \& Figure 5-b-2) onto usual solidness.

The solidness which changed in the quality overlaps with usual solidness.

Figure 5-d-1
e. The solidness (Figure 5-d-1)which changed in the quality penetrates into the trace of usual solidness.

Opened body-centered cubic structure manifests in the solidness which changed in the quality. That is, the structure of minus-SEPTIMALNOTATION of $1:-8$ emerges in the solidness which changed in the quality .

D-6 The fundamental form of the three-dimensional 8 directions (4 directions of the length, 4 directions of the diagonal side. IKOSOLID minus-SEPTIMALNOTATION of X^{3} of $\left.1:-8\right) \quad$ Reference: ThemeA (3)study c.p.t.f.p.a part -5 (3.31MB)

When being 1 is a man. $=0$
Figure 2-1

When being 1 is a woman. $=\mathrm{A}$
Figure2-2

The structure : the three-dimensional 8 directions (4 directions of the length, 4 directions of the diagonal side. IKOSOLID minus-SEPTIMALNOTATION of X^{3} of $\left.1:-8\right) \cdot \cdot$ Figure $2-3$

D-7 The fundamental form of the lump of IKOSOLID

As the feature structure : the three-dimensional 8 directions (4 directions of the length, 4 directions of the diagonal side. IKOSOLID minus-SEPTIMALNOTATION of X^{3} of $\left.1:-8\right)$ and as the outer fence structure : the three-dimensional 6 directions (2 directions of the length, 4 directions of the side. IKOSOLID SEPTIMALNOTATION of X^{3} of 1: 6)
a, The rule of the structure: The overlap connection (The length and the diagonal side) • • • The monopole
The diagonal transversal connection which doesn't overlap ••O+A or A+O * Only the overlap connection of the vertical connection among the fundamental forms. $[-7 \mathrm{~A}]+[-8 \mathrm{~A}]$ or $[-7 \mathrm{O}]+[-8 \mathrm{O}]$

Figure 3-1

The IKOSOLID crystal structure which can go through the solid (= the three-dimensional world)
Feature structure is
IKOSOLID minus-SEPTIMALNOTATION of X^{3} of $1:-8$.
Outer fence structure is IKOSOLID SEPTIMALNOTATION of X^{3} of $1: 6$
$1=6$
(1) is the point with feature of the 90 degree topological transformation
$6=1 \sim 6$

The ampere-hour meter measured data A April 4th in 2006 Ampere-hour meter connected to be opposite to the line. The wiring diagram p. 5

MANLAL

2.253 V - $0.0897 \mathrm{ma} \quad 0.161 \mathrm{mAp}$		
2.253 V	0.0857 ma	$0.161 m A m$
- 0.095 mdN	0.193 mVA	0.168 muar
-0.4900(PF)	-119.94 DEG	49.988 Hz
INTEGRATOR		
TOTAL TIME 00005:30:00		
3.21974 mah		6356mblh (+)
-0.9127midh $(-)$		
1NTERUAL TIPE 00000:00:00		
0.00000 mAh		000malhe + 3
0.0000 mdh		

1rIEGRATOR START

00000:00:00		
2.258 V	0.0859 mA	0.168 mAp
- 0.094mb	0.19 cmV	0.169 muar
-0.4870 (PF)	-119.14 DEG	49.990 Hz
INTEGRATOR		
TOTAL TIME	00005:30:00	
3.21974 mah	$3.6356 \mathrm{mblh}(+3$	
- $0.9127 \mathrm{ml} \mathrm{Wh}^{(-)}$		
INTERVAL TIME	00000:00:00	
0.00000 mAh	0.0000mbh (+)	
0.0000 mlhh		

NANUAL

$\begin{array}{r} 2.255 \mathrm{~V} \\ -\quad 0.079 \mathrm{mb} \end{array}$	0.0246 mA	0.145 mAr
	$0.166 \mathrm{mV} / \mathrm{A}$	D. 143 muar
-0.4728(PF)	-118.22 DEG	50.019 Hz
INTEGRATOR		
TOTAL TIME DD000:32:46		
$3.22340 \mathrm{mph} \quad 3.6356 \mathrm{mb}$		
- $0.9150 \mathrm{miNh}(-)$		
INTERVAL TIME 00000:02:46		
0.00066 mAh		0000mblh (+)
0034		

$$
=0.0034 \mathrm{~m} \operatorname{lin} 8-
$$

MARCLAL

$0.000 \mathrm{~m} / 4 \quad 0.130 \mathrm{~m} / \mathrm{A}-0.130 \mathrm{mve}$ $-0.0000(\mathrm{PF})-90.00 \mathrm{DEG} \quad 50.035 \mathrm{~Hz}$
INTEGRATOR
TOTAL TINE $3.22363 \mathrm{mAh} \quad 3.6356 \mathrm{mWh}(4)$

INTERVAL TIME 00000:02:59
0.00389 mAh
$-0.0034 m 3 h(-2$
MANLML

$\begin{aligned} & 2.223 \mathrm{~V} \\ & 0.000 \mathrm{mks} \end{aligned}$	0.0635 mA	$0.106 m a r$
	0.141 nVA	- D.141muar
-0.0000(PF)	- 90.00 DEG	50.008 Hz
INTEGRATOR		
TOTAL TINE 00005:33:34		
3.22401 mAh		635mblh (+)
- $0.9161 \mathrm{mWh}(-)$		
1 NTERVAL TIME 00000:00:34		
0.00427 mAh		000mWh $6+3$

$-0.0034 \mathrm{~m} / \mathrm{Nh}^{2}-$

00000:05:00

2.226 y	$0.167 \mathrm{Mm} A$	0.352 mAv
- 0.244 mbl	0.372 mVA	- 0.280nvar
-0.6567 (PF)	-131.05 DEA	50.000 Hz
INTECARATOR		
TOTAL TIME	00005:35:00	
3.22823 mAh		6356 mblh ¢ $^{\text {+ }}$)
- 0.9214 mWh		
INTERVAL TIME	00000:05:00	
0.00849 mAh		0000mbly (+)
- 0.0087 mbh		

00000:10:00
$2.145 \mathrm{~V} \quad 0.1565 \mathrm{~mA} \quad 0.509 \mathrm{mAP}$
$-0.346 \mathrm{~mW} \quad 0.346 \mathrm{mVA}-0.000 \mathrm{mmar}$ $-1.0000(P F)-180.00 \mathrm{DEG} \quad 49.981 \mathrm{~Hz}$ 1NTEGRATOR
TOTAL TINE
3.24793 mAh

- $0.9467 \mathrm{milh} \mathrm{K}_{-1}$

1NTERVAL TIME 00000:05:00
D.01970mAh
$=0.0253 \mathrm{~m} / \mathrm{Nh}(-)$

00000:15:00		
2.252 v	0.2589\%A	0.940 mte
- 0.328 mbl	0. 583 mu A	- 0.482mvar
-0.5632(PF)	-124.28 DES	50.041 Hz
INTECRATOR		
TOTAL TIME	00005:45:00	
3.27055 mah		
- 0.9761 mblh		
INTERVAL TIME	00000:05:00	
0.02262 mAh	0.0000wh3 +)	
- 0.0295mbhr		

MANJAL		
2,290 V	0.3019 mA	0.557mAp
-0.398md	0.691 mVA	- 0.565 mvar
-0.57544PF)	-125.13 DEG	50.013 Hz
INTEGKATOR		
TOTAL TINE	00005:45:00	
3.27055 mAh	$3.635 \mathrm{EmWh}(+)$	
- 0.9761 mbinc		
INTERVAL TIME	00000:00:00	
0.00000 mah	0.0000midh (+)	

A-1 Measurement experiment 1 p.7-8

By paying attention to the change of the power factor, the elapse of "-var is out of mirror "can be seen.

The ampere-hour meter measured data B March 30th in 2006 14:35~
14:40 Ampere-hour meter connected to be ordinary to the line. The wiring diagram p. 5

A-2 Measurement experiment 2 p. 8
By paying attention to the change of the power factor, the elapse of 'VA is into mirror "can be seen.

INTEGRATOR START

00000:00:00		
2.165 V	0.0000 mA	0.000mA
0.000 md	$0.000 \mathrm{mV} / \mathrm{A}$	0.000 mv
0.r (PF)	a.v DEG	50.017 Hz
INTEGRATCR		
TOTAL TIME	00002:00:00	
1.34312 mAh	1.9379wdh (+ +	
$0.0000 \mathrm{mWh}(-)$		
INTERVAL TIME	00000:00:00	
0.00000 mAh	0.00001mWh(+)	

00000:00:36		
2.330 V	1.0792 mA	3.198mAp
1.545 mW	2.514 mVA	1.9e3mvar
0.6145 〈PF ${ }^{\text {3 }}$	52.08 DEG	49.986 Hz
INTEGRATOR		
TOTAL TIME	00002:00:36	
I. 34460 mAh	$1.9399 \mathrm{mWh}(+)$	
$0.0000 \mathrm{mWh}(-)$		
1 NTERV/AL. TIME	00000:00:36	
0.00149 mAh	0.0020 malh $(+$)	
C. COOOmilh		

INTEGRATOR STOP

INTEGRATOR START
00000:00:00

2.326 V	0.7998ma 2.090 nap
1.200sdd	$1.861 \mathrm{mVA} \quad 1.416 \mathrm{mvar}$
0.6490 (PF)	49.53 DEG 50.001 Hz
INTEGRATOR	
TOTAL TIME	00002:00:36
1.34460 mfh	$1.9399 \mathrm{mWh}(+)$
0.0000 mivh (-)	
INTERVAL TIME	00000:00:00
0.00000 mAh	$0.0000 \mathrm{mblh}(+)$
$0.0000 \mathrm{mWh}(-)$	

00000:00:01

2.319 V	0.5529 mA	1.854 mAP
0.964 mN	1.282 mVA	0.845 muar
$0.7520(\mathrm{PF})$	41.24 DEG	50.001 Hz

INTEGRATOR
TOTAL TIME :00:38 0.0000 mWh 人

INTERVAL, TINE 00000:00:01
$0.00029 \mathrm{mAh} \quad$ C. $0004 \mathrm{mbh}(+)$ 0.0000imWh (-)

1NTEGRATOR STOP
integrator start
00000:00:00

MANLAL

2.319 V	0.7400 mA	2.253 mAp
$1.112 \mathrm{~m} / \mathrm{d}$	1.716 mVA	1.307 mwar
$0.6482(\mathrm{PF})$	49.60 DEG	49.996 Hz

INTEGRATOR
TOTAL TIME 00002:00:46
0.34610mAh $\quad 1.9421 \mathrm{mlhh}(+)$

INTERVAL TIME 00000:00:00
$0.00121 \mathrm{mAh} \quad 0.001$ EmWh $\langle+\rangle$
0.0000minis $(-$)

MANLAL
$2.249 \mathrm{v} \times 0.1187 \mathrm{~mA}$
$=0.265888 \mathrm{mVA}<0.408 \mathrm{~m}$ VA

2.240 V	0.1187 mA	0.768 mAp
0.408 mW	0.408 mVA	0.000 mvar
$1.0000(\mathrm{PF})$	0.00 DEG	49.971 Hz

INTEGRATOR
TOTAL TIME
1.34725 mAh
$0.0000 \mathrm{mWh}(-)$
INTERVAL TIME OOOCO:00:17
$0.00236 \mathrm{mAh} \quad 0.0034 \mathrm{mWh}(+)$

The ampere-hour meter measured data B minutes) Ampere-hour meter connected to be ordinary to the line. The wiring diagram p. 5

MANLAL		
2.078 V	0.0402 mA	0.0454 mmp
0.023 mbl	0.084 mVA	$0.090 n v a r$
0.2726 (PF)	74.18 DEG	49.686 Hz
INTEGRATOR		
TOTAL TIME 00000:00:		
$0.00000 \mathrm{mih} \quad 0.0000 \mathrm{minh}(t)$		
$0.0000 \mathrm{mblh}(-)$		
INTERVAL TIME 00000:00:00		
		0000mbh $(+$)
$0.0000 \mathrm{~m} / \mathrm{Wh}$ (-)		
MANULAL		
2.225 V	0.0000 mA	0.0000 mif
0.058 mld	$0.058 \mathrm{mN/A}$	0.000 mvar
1.0000 (PF)	0.00 DES	49.994 Hz
INTEGRATOR		
TOTAL TINE 00000:00:00		
		000mWhS ${ }^{\text {c }}$)
$0.0000_{\mathrm{m} / 2 h}(\rightarrow)$		
INTERVAL TIME 00000:00:00		
0.00000 mAh		00maln (+)
0.0000 mdh (-)		
MANLAL		
2.241 V	0.0000 mA	0.0000 mAp
0.056 mld	$0.056 \mathrm{~m} / \mathrm{A}$	0.000 muar
1.0000 (PF)	0.00 DEG	50.356 Hz
INTEGRATOR		
TOTAL TIME	00000:00:00	
0.00000 mAh		00mWh $2+$ +
$0.0000 \mathrm{ml/h}$ - -)		
INTERVAL TIME	00000:00:00	
0.00000 mAh		OUmWh (+)
$0.0000 \mathrm{mbhhs}->$		
MANLAL		
2.262 V	0.0433 mA	0.0913 mAP
0.077 mW	$0.098 \mathrm{mV} /{ }^{\text {a }}$	0.060 muar
$0.7909(P F)$	37.73 DEG	49.984 Hz
INTEGRATOR		
TOTAL TIME	00000:00:00	
0.00000 mah		$000 \mathrm{mb/h}$ (+)
$0.0000 \mathrm{Whh}(-)$		
INTERVAL TIME	00000:00:00	
0.00000 mAh		ODmah(+)
0.0000 mdh s -3		
MANUAL		
2.260 V	0.0000 mA	0.0000 mAP
0.073 mld	0.073 nVA	- 0.000 muar
$-1.0000(P F)$	- 0.00 DEG	49.903 Hz
INTEGRATOR		
TOTAL TINE	00000:00:00	
0.00000 mah		000mbhct
$0.0000 \mathrm{mWh} x->$		
INTERVAL TIME	00000:00:00	
0.00000 mAh		OOmb/h $\langle+$)
0.0000 mbhh <->		
MANUAL		
2.261 V	0.0411 mA	0.0948mAp
0.080 mbd	0.093 pVA	- 0.049 muar
-0.8577 (PF)	- 30.94 DES	49.975 Hz
INTEGRATOR		
TOTAL TIME	00000:00:00	
0.00000 mah		000mhhrs+ ${ }^{\text {a }}$
$0.0000 \mathrm{mWh}(-)$		
INTERVAL TIME	00000:00:00	
0.00000 mAh	0.	000mbh(+)
$0.0000 \mathrm{~m} / \mathrm{hh}\langle->$		
MANUAL		
2.260 V	0.0487 mA	0.0859 mAp
0.076 mld	0.110 mVA	- 0.07 minvar
-0.6947(PF)	- 46.00 DEG	49.823 Hz
INTEGRATOR		
TOTAL TIME ODO00:00:00		
$0.0000 \mathrm{mlh}(-)$		
INTERVAL TIME 00000:00:000.00000mAh$0.0000 \mathrm{mWh}(-)$		

The ampere-hour meter measured data $\mathrm{C}^{-} \mathrm{b}$ Thewiring diagramp. 5

The ampere-hour meter measured data
 I une 29th 9:50 in 2006 -
 J une 29th 11:50 in 2006 -

manual

2.120 V	0.0000 mA	0.000 mAP
0.000 mW	0.000 mVA	0.000 mvar
$-\quad 0 . V(P F)$	$0 . \mathrm{V}$ DEG	50.054 Hz
INTEGRATOR		
TOTAL TIME	$00026: 18: 43$	
26.6621 mAh	$0.0000 \mathrm{mWh}(+)$	
$-36.1908 \mathrm{mWh}(-)$		
INTERVAL TIME	$00000: 00: 00$	
0.00000 mAh	$0.0000 \mathrm{mWh}(+)$	
$0.0000 \mathrm{mWh}(-)$		

[E] manual

MANUAL

0.000 V	0.0000 mA	0.000 mAF
0.000 mW	0.000 mVA	0.000 mvar
$0 . r(\mathrm{PF})$	$0 . r \mathrm{DEG}$	72.921 Hz

o.r (PF

INARAT
o.r DEG 72.921 Hz
[F] MANUAL

C $\quad-\quad 4$
 Measurement experiment 6

p. 18

Zero piece a voltage
Zero electric
current
Change of
the
frequency
or (PF)
o.r DEG

TOTAL TIME 00026:18:43
$26.6621 \mathrm{mAh} \quad 0.0000 \mathrm{mWh}(+)$
$-36.1908 \mathrm{mWh}\langle-\rangle$
INTERVAL TIME 00000:00:00
$0.00000 \mathrm{mAh} \quad 0.0000 \mathrm{~m} / \mathrm{Wh}(+)$ $0.0000 \mathrm{mWh}(-)$

MANUAL

0.000 V	0.0000 mA	0.000 mAP
0.000 mW	0.000 mVA	0.000 mvar
$0 . \mathrm{r}(\mathrm{PF})$	$0 . \mathrm{V}$ DEG	72.921 Hz
INTEGRATOR		
TOTAL TIME	$00026: 18: 43$	
26.6621 mAh	$0.0000 \mathrm{mWh}(+)$	
$-36.1908 \mathrm{mWh}(-)$		
INTERVAL TIME $00000: 00: 00$		
0.00000 mAh	$0.0000 \mathrm{mWH}(+)$	
$0.0000 \mathrm{mWh}(-)$		

MANUAL
 0.0000 mWh -
manual
0.000 V 0.000 mW 0.r (PF)
0.0000 mA

0.000 mAP

 GRATORTOTAL TIME 00026:18:43

$$
0 . r \text { DEG } 72.921 \mathrm{~Hz}
$$ 26.6621 mAh

$-36.1908 \mathrm{mlNh}(-)$
INTERVAL TIME 00000:00:00 0.00000 mAh $0.0000 \mathrm{mWh}(-$)
[D]
MANUAL

Mandal		
0.281 V	0.0000 mA	0.000 mAP
0.000 mls	0.000 mVA	- 0.000 mvar
- o.r (PF)	- o.r DEG	50.026 Hz
INTEGRATOR		
TOTAL TIME	00026:18:43	
26.6621 mAh	$0.0000 \mathrm{mWh}(+)$	
-36.1908mWh(-)		
INTERVAL TIME	00000:00:00	
0.00000 mAh		0000 mbh (+)

C-3 Measurement experiment 5

Voltage Decrease

p. 18 Zero electric current
o.r (PF) o.r DEG

[^0]: With the 90 degree topological transformation with IKOSOLID, the imaginary number (the world in mirror = Point) becomes the real number (out of mirror =Point).
 It attaches to page 31. By paying attention to the change of the voltage, the elapse of " voltage is out of mirror(=Point) "can be seen.

